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Abstract
The purpose of this study was to develop a methodol-
ogy for the construction of models of interest to improve
the choice of areas to radiate in the use of brachyther-
apy (BT). This work aims to propose a principal compo-
nent model which is constructed from the data of differ-
ent patients including medical images of arbitrary resolu-
tion and modality supplemented with delineations of ra-
diation target (HR-CTV) structure, reconstructed appli-
cator structure and eventual organs at risk (OAR) struc-
tures. The principal component model provides informa-
tion about the spatial variability described by only a few
parameters. It can be used to predict specific extreme
situations in the scope of sufficient applicator radiation
dose coverage in the target structure as well as radiation
dose avoidance in OAR structures.

1 Introduction

A model that can define components of the cancer’s shape
can have a fundamental role for the technique that wants
to cure the cancerous tissue using radiotherapy.

In this work we wanted to develop a methodology to
obtain data statistically using past and present data avail-
able on patients suffering from cancer of the cervix. The
information required by each patient includes BT plan-
ning of medical images, delineated structure HR-CTV,
the rebuilt structure applicator BT, and organs (OAR) struc-
tures at risk. HR-CTV and OAR structures are in each
3D image bounded to each slice image, where the spe-
cific structure is present and, therefore, available as a set
of closed planar contours. Position of BT applicators is
defined by anatomy such that applicator structures enable
to put the structures of all patients into the same reference
coordinate system. This is the starting point for construct-
ing our model.

Due to high complexity of potential target structures
BT, we have selected the most common representation
of the structures by binary images. It is important that
HR-CTV and OAR structures cannot overlap and by join-
ing HR-CTV and OAR structure binary images we obtain
three-level images with OARs represemted by -1, back-
ground as 0 and HR-CTV by 1. This property was used
to simultaneously model both structure types without in-
creasing the amount of data in the principal component
analysis (PCA).

Typically the significance of tumor distribution de-
pend on the type of tumor. It can help in the development
of cancer treatment and biopsy strategies and techniques
[1, 2]. In the case of cervical cancer it is also important
due to analysis of different types of BT applicator and
their improvements.

In the following sections our approach to model the
spatial configuration of cervical cancer is described first.
We describe the proposed method of building the princi-
pal component model using synthetic data. We conclude
with a discussion that includes the analysis of the benefits
and limitations.

2 Principal component model

The principal component model provides information of
the BT target spatial variability expressed by only a small
number of parameters. The general idea is to be able to
reconstruct any target configuration, i.e., position and ex-
tent of HR-CTV as well as OAR structures, by correctly
setting the model parameters. As such the principal com-
ponent model can be used to predict various target config-
urations, e.g., extreme situations in the scope of sufficient
applicator radiation dose coverage in the target structure
as well as radiation dose avoidance in OARs. Such situa-
tions may be crucial for testing real applicator efficiency.
The principal component model tends to extract a min-
imal set of orthogonal components of spatial variations
in the region of interest using the principal component
analysis. PCA projects the data into a lower dimensional
linear space such that the variance of the projected data is
maximized, or equivalently, it is the linear projection that
minimizes the mean squared distance between the data
points and their projections. PCA provides a full set of
components that enable perfect data reconstruction, how-
ever, it also orders the components according to their im-
portance, i.e., according to their contribution to the data
description. It turns out that majority of the components
have low importance and only a small error is made when
only a few most important components are used. In this
case the important components can be computed more ef-
ficiently using singular value docomposition (SVD) [3].

The data of each image is reordered into a row vec-
tor and joined for all the patients into a matrixXP×L,
with P the number of patients andL the number of pixels
in the image. Then the mean vectorX is computed and
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subtracted from each data row to obtain the matrixX0

representing the zero-mean data variation. SVD decom-
posesX0 into three matrices; matrixV with orthogonal
columns that represent principal components, diagonal
matrix S with singular values that represent importance
of the components, and matrixU providing component
weights for reconstructing the input data:

X0 = USV
T (1)

The efficient SVD implementations, e.g., Matlabsvdsfunc-
tion, enable computation of only a given number of prin-
cipal componentsR, and as such provide approximate
solutions:

X0P×L ≈ UP×RSR×RV
T

L×R (2)

The obtained matricesS andV represent a principal com-
ponent model of the HR-CTV and OAR structures, such
that they of any patient can be represented with the R
components, i.e., the columns ofV, with weights:

U
′ = X

′

0
VS

−1 (3)

whereX′

0
= X

′
− X represents deviation of the data

from the average. Similarly, BT target data can also be
simulated by manual setting component weights inU,
following equation (2) and adding the mean vectorX.
Component weights form a low dimensional linear space
with a certain region around the origin that corresponds
to realistic data variation. The limits of this realistic sub-
space can be estimated by analyzing large amount of data,
i.e., large number of patients. Values at the border of the
realistic subspace can be used inU to simulate specific
extreme situations suitable for BT applicator analysis.

The simulated or reconstructed data that results from
the principal component model, as well as principal com-
ponents themselves, can be reordered back into 3D im-
ages. Due to interpolations and approximations the re-
constructed structures are not presented only with val-
ues 1, -1 and 0 for target structures, OAR structures and
surrounding respectively. Consequently, we recommend
completing the reconstruction procedure with threshold-
ing using thresholds -0.5 and 0.5.

3 Results

The principal component model was tested using a simu-
lated dataset that we have created for this purpose. Note
that the simulated structure images presented here do not
realistically simulate the BT target configuration, how-
ever enable illustration of the concept and testing of its
suitability for creating a realistic model.

The simulated data was generated using four random
parameters where three of them were used to simulate
variability of the HR-CTV structure and the additional
one for the variability of one OAR structure. The HR-
CTV structure was simulated as an ellipsoid with the three
parameters representing the semi-axes lengths while its
center was always in the applicator coordinate system ori-
gin. The OAR region was simulated as a sphere with the
given parameter representing its radius, while its center
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Figure 1: Illustration of the simulated dataset configuration.
The HR-CTV was simulated with an ellipsoid and one addi-
tional OAR structure as a sphere with a constant distanced from
the HR-CTV.
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Figure 3: Singular values corresponding to the first 11 compo-
nents; singular values represent the distribution of the dataset’s
energy.

was defined such that the distance between the edges of
BT target and the OAR structure was costant. For the il-
lustration see Figure 1. We used this solution in order to
test the possibility to model rules, which represent inter-
dependence of parameters and structures.

A principal component model was generated from a
dataset of 400 simulated 3D images with100× 100× 50
voxels. The simulation parameters were selected ran-
domly in the following ranges: a∈ [40, 73], b∈ [35, 59],
c ∈ [35, 49], r ∈ [15, 20] and d= 5. The computa-
tion of the principal component model was restricted to
11 principal components. The mean imageX and the
components are illustrated in Figure 2. The singular val-
ues that represent the distribution of the dataset’s energy
among the principal components indicate that the com-
ponent energy gradually decreases with the component
number, see Figure 3. However, although not all of the
energy was considered, the reconstructed images did not
differ considerably from the images from the training set
as shown in Figure 4, where a randomly selected input
structure image is compared with its reconstructed ap-
proximations obtained using three and eleven principal
components. We can notice minor differences even when
reconstructing from three components only.
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Figure 2: Components of the simulated dataset (central slices only). The mean imageX is presented in a scale from -1 (black) to
+1 (white) and components with a scale from -0.01 (black) to +0.01 (white).

Figure 4: The central slice of an input structure image (top)and
its reconstruction using 3 and 11 components (bottom left and
right respectively).

If we observe the component weights (the values of
matrix U), we can see that they are spread over a limited
PCA subspace, see Figure 5, which corresponds to valid
structure images. According to the shape of the subspace,
we can conclude that component weights of valid images
are not fully independent, although the components are
orthogonal. By selecting weights manually, additional
structure images can be simulated. If the selected weights
are from the subspace of valid structure images, the simu-
lated images follow the concepts of the input dataset, else
the results may include major deviations as demonstrated
in Figure 6.

The possibility to simulate structure images and have
control over its validity offers good opportunity to gener-
ate specific synthetic images of the BT target region that
represent extreme situations for BT applicator testing. In
that case the principal component model should be cre-
ated from real patient data and the test cases selected at
the border of the populated PCA subregion.

The realistic model has not been created, yet, however
we are looking forward to create it in collaboration with
medical institutions that maintain large databases of their
cervix cancer patients.

4 Discussion and conclusion

The applicator testing must take into account the BT tar-
get variability, e.g., by testing on diverse specific target
configurations, which can correspond to real patients or
obtained by modelling.
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Figure 5: Weights for the first three components of the simu-
lated structure images. The small dots correspond to images
from the input dataset, squares and large dots represent selected
values inside and outside the populated subspace for further
simulations.

The proposed principal component model has advan-
tages over using the real patients’ data, because of the
established control over the specificity of the cases, a pos-
sibility to simulate the non-existent cases and deperson-
alization.

The limitation of the principal model is in its high
computational cost. Computation of all the PCA compo-
nents would require enormous amount of memory, only
theV matrix would have the size of 500k× 500k ele-
ments (assuming 2× 2× 2 mm voxel size), which in float
data format requires 1TB of memory. Using the SVD ap-
proach with computation of the most important compo-
nents only, drastically reduces the memory requirements;
in our simulated case matrixV occupied only 22MB.
Such reduction of components is possible due to final
thresholding, which is applicable due to binary nature of
the structures. When the computational cost remains a
problem, high efficient PCA solutions [4] or alternative
structure representations could be used.

A principal component model of real cervix cancer
has not been made, yet. A large number of patient datasets
is required and in contrast to the spatial distribution model
the OAR structures must be included. The preparation
of such data is tedious due to non-standardized structure
naming. However the benefits of such dataset are not
only in the support of applicator development, but also
in outcomes of further statistical analysis that could sup-
port clinical process, e.g., structure delineation or radia-
tion planing, as well as making of clinical decisions.

To conclude, it may be widely accepted that reducing
dose at organs of risk is difficult without reducing dose at
large tumors [5], we believe that applicator improvements
based on spatial modelling could provide better alterna-
tives.
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Figure 6: Central slices of simulated structure images using se-
lected component weights from the subspace of valid structure
images (left) and from other parts of the PCA space (right).
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