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Abstract Typically the significance of tumor distribution de-

The purpose of this study was to develop a methodd?end on the type of tumor. It can help in the development
ogy for the construction of models of interest to improv®f cancer treatment and biopsy strategies and techniques
the choice of areas to radiate in the use of brachytherll, 2]. In the case of cervical cancer it is also important
apy (BT). This work aims to propose a principal compodue to analysis of different types of BT applicator and
nent model which is constructed from the data of differtheir improvements.

ent patients including medical images of arbitrary resolu-  In the following sections our approach to model Fhe
tion and modality supplemented with delineations of raSpatial configuration of cervical cancer is described first.
diation target (HR-CTV) structure, reconstructed appli-"e describe the proposed method of building the princi-
cator structure and eventual organs at risk (OAR) strucP@l component model using synthetic data. We conclude
tures. The principal component model provides informavith gd_iscyssion that includes the analysis of the benefits
tion about the spatial variability described by only a few@nd limitations.

parameters. It can be used to predict specific extrem .

situations in the scope of sufficient applicator radiationf Principal component model

dose coverage in the target structure as well as radiatiofne principal component model provides information of
dose avoidance in OAR structures. the BT target spatial variability expressed by only a small
. number of parameters. The general idea is to be able to
1 Introduction reconstruct any target configuration, i.e., position and ex

A model that can define components of the cancer’s shaft of HR-CTV as well as OAR structures, by correctly
can have a fundamental role for the technique that wang§tting the model parameters. As such the principal com-
to cure the cancerous tissue using radiotherapy. ponent model can be used to predict various target config-

In this work we wanted to develop a methodology td/rations, e.g., extreme situations in the scope of sufficien
obtain data statistically using past and present data-ava@iPplicator radiation dose coverage in the target structure
able on patients suffering from cancer of the cervix. Th@S well as radiation dose avoidance in OARs. Such situa-
information required by each patient includes BT plantions may be crucial for testing real applicator efficiency.
ning of medical images, delineated structure HR-CTVI he principal component model tends to extract a min-
the rebuilt structure applicator BT, and organs (OAR) strial set of orthogonal components of spatial variations
tures at risk. HR-CTV and OAR structures are in eacH the region of interest using the principal component
3D image bounded to each slice image, where the Sp@nalysis. PCA projects the data into a lower dimensional
cific structure is present and, therefore, available as a détear space such that the variance of the projected data is
of closed planar contours. Position of BT applicators i§haximized, or equivalently, it is the linear projectionttha
defined by anatomy such that applicator structures enalénimizes the mean squared distance between the data
to put the structures of all patients into the same referen&®ints and their projections. PCA provides a full set of
coordinate system. This is the starting point for construcEomponents that enable perfect data reconstruction, how-
ing our model. ever, it also orders the components according to their im-

Due to high complexity of potential target structuregdortance, i.e., according to their contribution to the data
BT, we have selected the most common representati§§scription. It turns out that majority of the components
of the structures by binary images. It is important thafave low importance and only a small error is made when
HR-CTV and OAR structures cannot overlap and by joinonly a few most important components are used. In this
ing HR-CTV and OAR structure binary images we obtairfase the important components can be computed more ef-
three-level images with OARs represemted by -1, backiciently using singular value docomposition (SVD) [3].
ground as 0 and HR-CTV by 1. This property was used 1he data of each image is reordered into a row vec-
to simultaneously model both structure types without intor and joined for all the patients into a matfp .,

creasing the amount of data in the principal compone#¥ith P the number of patients arldthe number of pixels
analysis (PCA). in the image. Then the mean vecid¥ris computed and
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subtracted from each data row to obtain the maKix
representing the zero-mean data variation. SVD decom-
posesXj into three matrices; matri¥ with orthogonal
columns that represent principal components, diagonal
matrix S with singular values that represent importance
of the components, and matri¥ providing component
weights for reconstructing the input data:

X, =USVT (1)

The efficient SVD implementations, e.g., Mat&ldsfunc-
tion, enable computation of only a given number of prin-
cipal componentsk, and as such provide approximate
solutions: Figure 1: lllustration of the simulated dataset configamati
The HR-CTV was simulated with an ellipsoid and one addi-
Xopxr ® UpxrSrxrVixr (2) tional OAR structure as a sphere with a constant distariicem
the HR-CTV.

The obtained matricé$andV represent a principal com-

ponent model of the HR-CTV and OAR structures, such 1400
that they of any patient can be represented with the R *
components, i.e., the columns'df, with weights: 120
U =X, VS~ 3) g%
_ Sw
whereX{ = X’ — X represents deviation of the data &
from the average. Similarly, BT target data can also be E, 600 * o
simulated by manual setting component weightdin B a0 H
following equation (2) and adding the mean veckr N
Component weights form a low dimensional linear space 200- A S S
with a certain region around the origin that corresponds
to realistic data variation. The limits of this realistidasu — % 3 4 5 6 8§ 9 10

space can be estimated by analyzing large amount of data, Component

i.e., large number of patients. Values at the border of the ] ) ]

realistic subspace can be useduinto simulate specific F9ure 3: Singular values corresponding to the first 11 compo
extreme situations suitable for BT applicator analysis. nents; singular values represent the distribution of thasdd’'s
The simulated or reconstructed data that results frof ' -
the principal component model, as well as principal com-

ponents themselves, can be reordered back into 3D ifvas defined such that the distance between the edges of
ages. Due to interpolations and approximations the r&T target and the OAR structure was costant. For the il-
constructed structures are not presented only with valstration see Figure 1. We used this solution in order to
ues 1, -1 and 0 for target structures, OAR structures angst the possibility to model rules, which represent inter-
surrounding respectively. Consequently, we recommengépendence of parameters and structures.

completing the reconstruction procedure with threshold- A principal component model was generated from a

ing using thresholds -0.5 and 0.5. dataset of 400 simulated 3D images with) x 100 x 50
voxels. The simulation parameters were selected ran-
3 Results domly in the following ranges: & [40, 73], b € [35, 59],

The principal component model was tested using a sim§-€ [35:49], € [15,20] and d= 5. The computa-

lated dataset that we have created for this purpose. NJ{@" Of the principal component model was restricted to

that the simulated structure images presented here do rdt Principal components. The mean imaKeand the
realistically simulate the BT target configuration, how-components are illustrated in Figure 2. The singular val-

ever enable illustration of the concept and testing of it§€S that represent the distribution of the dataset's energy
suitability for creating a realistic model. among the principal components indicate that the com-
The simulated data was generated using four randoRNent energy gradually decreases with the component

parameters where three of them were used to simuldi¥mPer, see Figure 3. However, although not all of the
variability of the HR-CTV structure and the additional€N€rdy was considered, the reconstructed images did not

one for the variability of one OAR structure. The HR-differ consi_der:_;lbly from the images from the training set

CTV structure was simulated as an ellipsoid with the thrg&S Shown in Figure 4, where a randomly selected input
parameters representing the semi-axes lengths while fEUCture image is compared with its reconstructed ap-
center was always in the applicator coordinate system offfoXimations obtained using three and eleven principal
gin. The OAR region was simulated as a sphere with thg°Mponents. We can notice minor differences even when
given parameter representing its radius, while its centégconstructing from three components only.
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Figure 2: Components of the simulated dataset (centrassbaly). The mean imagk is presented in a scale from -1 (black) to
+1 (white) and components with a scale from -0.01 (black)a®#% (white).

If we observe the component weights (the values of
matrix U), we can see that they are spread over a limited
PCA subspace, see Figure 5, which corresponds to valid
structure images. According to the shape of the subspace,
we can conclude that component weights of valid images

are not fully independent, although the components are
orthogonal. By selecting weights manually, additional
structure images can be simulated. If the selected weights
are from the subspace of valid structure images, the simu-
lated images follow the concepts of the input dataset, else
the results may include major deviations as demonstrated
in Figure 6.

The possibility to simulate structure images and have
control over its validity offers good opportunity to gener-
ate specific synthetic images of the BT target region that
represent extreme situations for BT applicator testing. In
that case the principal component model should be cre-
ated from real patient data and the test cases selected at
the border of the populated PCA subregion.

The realistic model has not been created, yet, however
we are looking forward to create it in collaboration with
medical institutions that maintain large databases of thei

Figure 4: The central slice of an input structure image (o) . .
nCEI’VIX cancer patients.

its reconstruction using 3 and 11 components (bottom laft a

right respectively). . . .
4 Discussion and conclusion

The applicator testing must take into account the BT tar-
get variability, e.g., by testing on diverse specific target
configurations, which can correspond to real patients or
obtained by modelling.
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Figure 5: Weights for the first three components of the simu-
lated structure images. The small dots correspond to image:
from the input dataset, squares and large dots represestest|
values inside and outside the populated subspace for furthe!
simulations.

The proposed principal component model has advan-
tages over using the real patients’ data, because of the
established control over the specificity of the cases, a pdsigure 6: Central slices of simulated structure imagesgusés
sibility to simulate the non-existent cases and depersofgcted component weights from the subspace of valid strectu
alization. images (left) and from other parts of the PCA space (right).
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