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Abstract

A one-dimensional fluid model is presented and used for
the analysis of the potential formation in front of a
negative planar electrode immersed in magnetized
plasma. The Bohm criterion and the floating condition
are derived and used to determine the sheath thickness
and the sheath potential drop. With increasing angle of
magnetic field lines with respect to the electrode surface
the floating potential, the sheath edge potential and the
sheath potential drop all increase, while the sheath
thickness has a minimum.

1 Introduction

Problem of the sheath formation in front of a
negative electrode immersed in magnetized plasma is an
important one and has attracted a lot of attention. The
pioneering works of Chodura [1], Riemann [2,3],
Stangeby [4] and some others [5,6] have been extended
and revisited in many directions. In this work attention
is focused to the effect of ion temperature and magnetic
field angle to the floating potential of a planar electrode
immersed in plasma where magnetic field lines form an
arbitrary angle with the electrode surface. The study is
aimed at a fusion application. The scrape-off layer of a
tokamak, for example has low density plasma in strong
magnetic fields. Further, the angle of incidence of the
magnetic field lines onto the divertor spans nearly the
whole range from perpendicular to parallel. In the next
section a one-dimensional fluid model is described. In
section 3 results of the model are presented and finally
some conclusions are given.

2 Model

The ions are assumed to obey the continuity
equation and equation of motion:
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Here m; is the ion mass, t is time, w; is the ion fluid
velocity, n; is the ion density, e, is the elementary
charge, E is electric field, B is magnetic field, p; is the
ion pressure, S; is the source term and A; is the collision
term. Detailed descriptions of elastic collisions in fluid
models can be found in e. g. [7]. In this work we simply
take it to be proportional to ion fluid velocity w;:

A, =-mnyvu;. (3)
As for the source term S; it is assumed that the
predominant ionization mechanism is ionizing collisions
of electrons and neutral atoms. The electrons are
assumed to be Boltzmann distributed:
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The source term is therefore given by:
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Here k is the Boltzmann constant, T, is the electron
temperature, v is the frequency of elastic collisions, ris
average time between two consecutive ionizing
collisions between electron and a neutral atom and ng is
the plasma density in the plasma region which is not
perturbed by the electrode — this means beyond the pre-
sheath. The potential @ is determined by the Poisson
equation:
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Here g is the permittivity of the free space.
Furthermore it is assumed that the following equation of
state relates the ion pressure, p;, density n; and
temperature T;:

p; = xnKT,. (7

Here x is the polytropic coefficient. Our model is
isothermal so the ion temperature is assumed to be
constant everywhere and therefore x = 1. Our model is
one-dimensional. The x axis is assumed to be
perpendicular to the electrode. The gradient and Laplace
operators are replaced by derivatives over x
2
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The electric field has only one component E, which is
given by:

The magnetic field lies in the xy plane forming the angle

a with the y axis, as shown in FigBl.
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Figure 1: Schematic of the model. The magnetic field lies in
the xy plane and the x axis is perpendicular to the electrode.

electrode

The components of the magnetic field are
B=B(sina, cosa, 0).

The equations (1), (2) and (6) are therefore written in
the following form:
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The following variables have been introduced:
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The potential ® is normalized to the electron
temperature divided by elementary charge kT./e,. The
components of the ion velocity are normalized to the so
called normalizing velocity co, defined in (13). The
space coordinate x is normalized to the Debye length
Ap. The difference between the normalizing velocity ¢
and the ion sound velocity cs should be emphasized.
The ion sound velocity is defined as:

KT, + kT,
Cs=,|——. (14
m.
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Taking into account that the screening temperature
T is equal to the electron temperature T, because there
is only one electron population present in our model and
that x = 1 and using (13) the ions sound velocity is
written in the following way:

v, =% - 1re.

C0
Using equations (8) - (12) the quasi neutral pre-
sheath region and the sheath region can be analyzed
together. But sometimes one is interested only in the
neutral pre-sheath region. In this case the Poisson
equation (12) is replaced by the neutrality condition:

n(X)=exp(¥(X)). (16)
The system of equations (8) - (11), (16) is then used
for the analysis of the pre-sheath only.

(15)

3 Results

In this section some results of the model described in
the previous section are presented. The presentation is
started with the analysis of the pre-sheath region only.
The system of equations (8) - (11), (16) is solved. The
system of equations (8) - (11), (16) is highly nonlinear
and must be solved numerically. The integration is
started at X = 0 and progresses in the positive X
direction towards the electrode. One has to deal with an
initial value problem. So the initial conditions, i. e. the
initial values of the functions ¥, n, Vy, Vy and V, have to

be selected. The following initial conditions are
selected:
dv
n(0)=1 ¥(0)=0, —(0)=0,
=1 ¥(0)=0. G (0)=0.

V,(0)=V,, V, (0)=0, V,(0)=0.

It is assumed that at the initial point X = 0 the plasma is
not perturbed, so the plasma density there is ngy, which
gives the first initial condition. In the unperturbed
plasma also electric field must be zero and this gives the
third initial condition. The second initial condition
simply tells that the plasma potential at X = 0 is selected
as the zero of the potential. In our model the ions are
born at rest so all three velocity components should be
zero. But in this case only the zero solution of the
system can be found. So a small initial velocity [1,3,4]
in the positive X direction must be selected. A



typical value is Vo = 10, In Fig. 2 the potential ¥(X)
and velocity V,(X) profiles are shown. The parameters
are the following: K=50,Z =2, =20°, ¢= 10" and 3
values of ® are selected: ®=0,0=1and ® = 2.
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Figure 2: Potential ¥(X) and velocity V,(X) profiles obtained
from the system (8) - (11), (16) for the parameters: K = 50,
Z=2 a=20° £=10",©=0, ®=1 and ©® =2 and
initial conditions (17) with Vo =10%.

It can be seen that the pre-sheath length increases with
increasing ® while the potential at the sheath edge
remains constant. In Fig. 3 the position of the sheath
edge Xsg and the ion sound velocity Vs are plotted
versus 0.
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Figure 3: The sheath edge position Xse and the ion sound
velocity Vs versus ©.

We now move to the analysis of the sheath and pre-
sheath together, using the system (8) - (12). In Fig. 4
potential W(X) and velocity V,(X) profiles obtained from
the system of equations (8) - (12) are shown. The
following parameters are selected: K =50, Z = 2,
a=20° &=10"and ® = 0. The initial conditions
(17) are used, with Vo = 107,

Comparison of Figs. 2 and 4 shows an important
difference between the solutions on the system (8) -
(11), (16) on one hand and of the system (8) - (12) on
the other. The solution of the pre-sheath system (8) -
(11), (16) breaks down when the ion velocity V, reaches
the ion sound velocity Vs. The sheath edge position and
consequently also the potential can therefore be
determined from the following condition:

V, (X )=Vs =+1+0.

(18)
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Equation (18) is the well known Bohm criterion [8].
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Figure 4: Potential ¥(X) and velocity V,(X) profiles obtained
from the system (8) - (12) for the parameters: K =50, Z =2,
a=20° £=10*,®=0and initial conditions (17) with
Vp=10%.

The solutions of the system (8) - (12) on the other hand
can be continued to arbitrary X. A natural question
arises where should the integration of the system (8) -
(12) be stopped. One possibility is the floating potential
of the electrode. At the floating potential the ion and
electron current to the electrode are equal,

Ji = Je' (19)
Here j; is the ion current density and j. is the electron
current density. The ion current density is given by the
product of the ion velocity and density:

ji = Uy ;. (20)

The electron current density is calculated from the
Maxwellian velocity distribution function:

o e,®(x)) | KT,
Je_n°8Xp( KT, } 27m,

Combining (13), (19), (20) and (21) the floating
condition (19) is written in the following form:

n(X)VX(X)=\/217ﬂexp(‘P(X)).

From (22) a so called floating function Wg,(X) is defined
in the following way:

W (X)=In(n(X)V, (X)V2mu ). @3)

The recipe how to find the floating potential is now
obvious. One must find either the point X and the
respective  W(X) where (22) is fulfilled or the
intersection between the potential profile W(X) and the
floating function Wq,(X) defined in (23). Both methods
for determination of the floating potential are illustrated
in Fig. 5. The following parameters are selected: Z = 2,
£=10° K =50, a=20° ® =0, Vo = 10%, = 1/100
and the initial conditions (17) are used. In the top two
plots the ion and the electron flux are plotted and in the
bottom plots the potential profile and the floating
function are displayed. In the left graph a part of the
respective right plot is shown on an expanded scale.

(21)

(22)
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Figure 5: The ion and electron flux are shown in the top
graphs. In the bottom plots the potential and the floating
function are plotted. In the right plot a part of the respective

left figure is shown on an expanded scale.

The floating potential and the respective coordinate
can be determined using (22) or (23), while the sheath
edge coordinate and potential can be determined from
the Bohm condition (18).

So for a given set of parameters the sheath thickness
and the potential drop in the sheath can be found easily.
An example is shown in Fig. 6. The following
parameters are selected: Z = 2, = 10°, K =200, © = 0,
1= 1/3670.48 (deuterium mass)
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Figure 6: The floating and the sheath edge potential (top left),
the sheath potential drop (top right), the sheath thickness
(bottom left) and the electrode position (bottom right) versus

the magnetic field angle a.

The initial conditions are given by (17) with V, - 10°®.
With « increasing the floating potential, the sheath edge
potential and the sheath potential drop all increase,
while the sheath thickness has a minimum.

4 Conclusions

A one-dimensional fluid has been presented and
used for the analysis of the potential formation in front
of a negative planar electrode immersed in a magnetized
plasma. The magnetic field lines form an arbitrary angle
with the electrode surface. The only exception is that
they must not be completely parallel to the electrode
surface. From the model equations the potential and
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velocity profiles can be found numerically. When they
are calculated also the sheath edge coordinate and
potential can be identified using the Bohm condition
(18) and also the floating potential and the respective
coordinate can be found using (22) or (23). From this
the sheath thickness and the sheath potential drop can be
calculated. With increasing mnagnetic field angle the
sheath edge potential, the floating potential and the
sheath potential drop all increase, while the sheath
thickness has a minimum. The effects of the non-zero
ion temperature have been studied. If the ion
temperature is increased, only the pre-sheath length
increases, while the pre-sheath potential drop remains
constant. Comparison of the predictions of our fluid
model with particle-in-cell computer simulations is
under way.
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