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Abstract
Good quality of features and properly selected thresholds
are essential for reliable performance of condition mon-
itoring systems. Ideally, thresholds should be chosen so
that false alarms are not triggered under normal condi-
tions and faults are detected without delay. If the thresh-
olds are set too high, missed alarms may occur while too
low values implicate false alarms. Typical issue in the
commissioning phase is that a skilled person is needed to
tune the values of the thresholds, for each component of
the machine. The task is nontrivial as the same feature
may be related to several different faults with different
sensitivities. Motivated by this issue, the aim of this paper
is to derive algorithms for threshold selection on rigorous
mathematical basis. The idea is to use the probability of
false alarm (PFA) as a design parameter and then cal-
culate the thresholds associated to the relative changes
in condition indicators instead of tuning many thresholds
separately. The performance of the algorithms is con-
firmed via simulations.

1 Introduction
Various maintenance strategies have been developed
through the years, but one currently attracting attention
is the condition based maintenance (CBM). CBM is a
predictive maintenance strategy that recommends main-
tenance decisions based on condition monitoring (CM).
In order to assess the system’s health condition, several
CM tasks have to be performed: (i) data acquisition, (ii)
feature extraction, (iii) feature evaluation, (iv) fault isola-
tion and (v) fault identification. The effectiveness of these
tasks reflects in CM performance indicators of which sen-
sitivity and accuracy are the most important. Ideally, one
would prefer perfect accuracy, highest resolution and sta-
ble and reliable diagnosis; however in reality this cannot
be fully achieved [1]. The performance significantly de-
pends on thresholds used in diagnostic decision making.
If the threshold value is set too high, missed alarms may
occur, while too low values may implicate false alarms.
Furthermore, typical issue in the commissioning phase is
that a skilled person is needed to tune the values of the
thresholds, for each component of the machine.

To illustrate this problem a drive train of a helicopter
is analysed in [2]. This complex system has 25 shafts,

27 gears and 65 bearings, or total 117 monitored com-
ponents. In most circumstances each component has a
number of failure modes and a number of condition indi-
cators (CIs) to detect those failure modes. For bearings,
damages typically occur on their internal elements such
as roller, cage, inner and outer race. Using envelope or
cepstrum analysis normally 5 CIs are required for detec-
tion. The same applies in case of shafts where at least 3
types of failures can occur. However, for more complex
components such as gears which have a number of fail-
ure modes we could suppose that only 6 CIs are needed.
According to the example, considerable number of CIs is
obtained and for each CI unique threshold has to be set,
altogether 25 · 3 + 27 · 6 + 65 · 5 = 562 threshold val-
ues. Typically these threshold values are set statistically
e.g. when single CI is 3 standard deviations above the
mean value. Using the statistical rule mentioned before,
the probability that any good CI (Gaussian distributed)
will report false alarm is 0.0013. However, if we sup-
pose that there are eight acquisitions per hour, or total
562 ·8 = 4496 trials, the probability of false alarm (PFA)
just per acquisition would be 53%. Regrettably in real-
ity this alarm rate is much higher. According to [2], due
to Rayleigh distributed shafts and bearings CIs the false
alarm rate per acquisition will raise to 83%, which is a
huge percent of false alarms.

Motivated to address the above issues within a rigor-
ous framework, this paper presents a novel thresholding
approach, whose main idea is to use the PFA as only de-
sign parameter and then calculate the thresholds based on
relative changes in CIs. This way a unique threshold is
created, which leads to better performance and design of
the condition monitoring system. At the beginning this
paper overviews related references in this field. Then
the design and implementation of our novel thresholding
concept is explained and demonstrated via simulations in
Matlab. At the end, ideas for further work are indicated.

2 Related work
The problem which is essential in diagnostic decision
making is illustrated in Figure 1. Usually, the distinc-
tion between normal and abnormal values of features
is performed by means of thresholds. If the numerical
value of a feature does not exceed the threshold, this fea-
ture is considered to reflect normal condition of a sys-
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tem (or system component). If it exceeds the threshold,
then the system (or component) is considered faulty. Al-
though Boolean approach is used in many applications,
still small changes around the threshold value could in-
duce frequent change in the resulting diagnosis (Figure
1). This is called diagnostic instability [1].

An alternative solution is approximate reasoning, an
approach in which the qualitative value of a residual is
represented by a quantity between 0 and 1, indicating the
degree of fault. In contrast to the previous approach, here
incremental changes in residuals always result in incre-
mental changes in the belief of fault candidates [1].

Figure 1: Boolean vs. approximate reasoning, [1]

Although many decision-making approaches have
been developed, there are only few works dealing with
the design of optimal threshold for maximal reliability.
For example in [3], the fundamental change detection
algorithms mainly based on hypothesis testing are pro-
posed. However, in order to design a statistical decision
rule that can detect changes in features, a priori formu-
lation of the statistical properties describing the data in
nominal condition must be known. Unfortunately, in re-
ality this is not the case. Unlike the above mentioned
approach, in [4] on the basis of CIs and without a priori
known statistics an optimal threshold is designed. It is as-
sumed that CIs for shaft magnitude and bearing envelope
energy are distributed according to the Rayleigh distri-
bution. These CIs for a given component are fused into
one HI which is a function of distributions, where CIs are
treated as random variables from Rayleigh distribution.
Mathematical calculations are preformed and based of
predefined PFA the critical value is calculated. However,
to construct a function of distributions, the CIs must be
independent and identically distributed from each other,
and this cannot be performed just with decorrelation as in
[4].

Motivated by [4] the aim of this paper is to revisit the
problem and derive algorithms for thresholds selection on
rigorous mathematical basis.

3 Optimal threshold selection
The acquired signal y(t) is assumed to consist of a deter-
ministic part corrupted with white Gaussian noise

y(t) = x(t) + w(t) (1)

w(t) ∼ N(0, σ2) (2)

where x(t) is deterministic signal and w(t) white Gaus-
sian noise with zero mean and unknown variance. These

types of signals are good model for explaining vibration
measurements in rotating machinery. In many applica-
tions feature extraction in rotating machinery is carried
out with linear signal processing techniques, like Fast
Fourier Transform (FFT) and wavelet transform [5], [6].
Typically these features represent components of Fourier
or wavelet spectrum.

3.1 Data acquisition setup
Data acquisition setup is explained in Figure 2. The logic
behind the sampling protocol is that in the 99 % of the
cases, the condition of the machines aggravates gradu-
ally. Hence, it is not needed to perform sampling all the
time, unless the criticality conditions implicate continu-
ous sampling. So we assume periodic occasional sam-
pling within successive sampling sessions. Each session
consists of N samples taken at a sampling rate fs = 1

Ts
.

The first Nref sessions belong to the reference window
and are taken while machine is in the healthy state. Dur-
ing the operation a sliding window with Ncur recent sam-
pling sessions is used to decide whether there is a change
in the features statistics. For the simplicity let us assume
that after each measurement session labelled k, a feature
being the mth component of the Fourier spectrum is cal-
culated as follows:

Zk,ref =
N−1∑
t=0

yk(t)e
j2πmt

N = Xk,ref +jYk,ref (3)

k = 1, ..., Nref

Since Fourier transform (3) is linear transformation of
normally distributed random signal (1), Zk,ref is also
normally distributed but complex random variable. Fur-
thermore, the same applies also for the current condition:

Zl,cur =
N−1∑
t=0

yl(t)e
j2πmt

N = Xl,cur +jYl,cur (4)

l = 1, ..., Ncur

Figure 2: The computational scheme

After the set of features are formed, a batch of Nref

features obtained in nominal condition and a batch of
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Figure 3: An example of vibrational signal from an acquisition
session

Ncur features obtained at current condition are subjected
to centering by subtracting the average from nominal con-
dition from both batches

Zk,ref← (Xk,ref −Xk,ref +j(Yk,ref −Y k,ref ) (5)

where X denotes the expected value of X .

3.2 Detection
A statistical hypothesis test is derived from the previously
obtained centred reference and current sets of features
Zk,ref , k = 1, ..., Nref and Zl,cur , l = 1, ..., Ncur. Let
us now note that the sum of squared modules of Zk,ref is
compliant with the central chi-squared distribution with
Nref degrees of freedom.

CIref =

Nref∑
k=1

Zk,ref Z
∗
k ,ref =

Nref∑
k=1

|Zk,ref |2 (6)

CIref ∼ χ2(Nref )

This result is obtained by assumption that in nominal con-
dition small changes in the mean occur between different
sampling sessions. Actually we suppose that the healthy
features are zero mean and their chi-square statistics are
obtained by mathematical calculation (6). In general,
when the component becomes faulty, the mean of the fea-
tures is no longer zero, meaning that the features in cur-
rent condition are

CIcur =

Ncur∑
l=1

Zl,cur Z
∗
l ,cur =

Ncur∑
l=1

|Zl,cur |2 (7)

CIcur ∼ χ2(Ncur, λ)

λ =

Ncur∑
l=1

(
µl,cur
σl,cur

)2 (8)

distributed according to the noncentral χ2 distribution
with Ncur degrees of freedom and noncentrality parame-
ter λ. The noncentrality parameter is related to the means
µl,cur and the variances σl,

2
cur of the random variables

CIcur. This is the case because of the non-zero mean
features Zl,cur (5). As a result of the changes, for ex-
ample in the amplitude of a signal, the statistics of the
features are changing, which is an indication that a fault
has occurred. From here it is easy to distinguish between
different faults. Changes in the signal will reflect in large
increase in the mean of the signal and by the ratio be-
tween these CIs the decision could be made. If there
is no change in the system condition, then the statistical

properties of |Zl,cur|2, l = 1, ..., Ncur should be equal
to the statistical properties of |Zk,ref |2, k = 1, ..., Nref ,
i.e. should share the same χ2 distribution. Let us as-
sume E|Zl,cur|2 = σ2

cur and E|Zk,ref |2 = σ2
ref for all

samples. If the system condition deteriorates, the statis-
tical properties of the feature change, which normally af-
fect the increase in feature variance. Since both sets of
samples are independent, we can define the null hypoth-
esis H0 : σ2

cur = σ2
ref versus the alternative hypothesis

H1 : σ2
cur > σ2

ref . We propose the test statistic

CIF =
CIcur/Ncur

CIref/Nref
(9)

which under H0 complies with the central F-distribution
with Ncur − 1 and Nref − 1 degrees of freedom. So,
given samples we reject H0 if

CIF ≥ h = Fα(Ncur − 1, Nref ) (10)

where the term on the right side denotes the critical value
of the distribution at the level of significance α. The level
of significance α · 100% denotes the tolerated PFA. For
example, in case of Nref = 400 and Ncur = 400 and
PFA = 5% from the table of low critical values for the
F distribution it follows that the value of the threshold
h = 1, 2290.

3.3 Health index
In many applications more than one feature is usually ex-
tracted from available sensor systems. Hence a finger-
print of a fault can be characterized by several features
with increased values. Moreover, in real applications the
operators are interested to have one figure which will re-
flect the health states of the machine. This is called health
index (HI) and takes values from 0 to 1. Since CIs reflect
the level of fault in a particular component, the HI has to
be a function of CIs. There are several options how to
perform aggregation for example to use:

• order statistics (min/max values),

• weighted sum of features.

However, in order to make function of CIs, as stated in [7]
the CIs must be independent and identically distributed.
In our approach this has been achieved in the aggregation
step, where every single feature is extracted from differ-
ent successive acquisition sessions. In addition, we pro-
pose summation of n noncentral F distributed CIs. If the
CIs are independent and identical then the function de-
fines a unknown distribution. Due to the fact that the dis-
tribution of the obtained sum is unknown, we are propos-
ing Monte Carlo simulation, where after several simula-
tions the function defines a distribution with normal PDF.

4 Simulation study
Preliminary results are shown on the simulated two-
component signal with additive white Gaussian noise.

y(t) = A ·(sin(2π ·20 ·t)+sin(2π ·50 ·t))+w(t) (11)
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Figure 4: Signal from an acquisition session (left) and calcu-
lated feature as a component from the Fourier spectrum

Changes in amplitude A simulate increase in a compo-
nent of a vibrational signal due to a particular fault (e.g.
unbalance). This change influences the current feature
statistics. Let us take the referent set with Nref = 400
sampling sessions and let be sliding window in on-line
operation Ncur = 100. Each session contains N =
1000 samples. Prior to calculating the FFT of sampled
record in a measurement session the record is multi-
plied by Hamming window. From a batch of features
collected in nominal condition and a batch correspond-
ing to the current condition, a statistical hypothesis test
is derived. Figure 5 shows the distribution of summed
squares of features in nominal condition obeying central
chi-squared distribution and a batch of features in cur-
rent condition obeying noncentral chi-squared distribu-
tion. Furthermore, noncentral F-test is preformed where

Figure 5: Histogram of the CIs in the nominal and current con-
dition

the resulting CIs are used for obtaining the threshold val-
ues by inverse cumulative density function. In this sim-

Figure 6: PDF of Noncentral F distribution and decision thresh-
old

ulation the frequency component of interest is the one at
the frequency f = 50Hz. For prescribed PFA = 5%
the optimal threshold value is h = 1.283. We see that
the test reliably detects change in the feature. However,

Figure 7: Performace of the detection algorithm

the alarm is triggered with a delay defined by the window
length.

5 Conclusion
The paper presents a novel approach, setting the thresh-
olds to n of condition monitoring algorithms by using
only one ”tuning knob” i.e. the allowed probability of
false alarm. Feature extraction based on linear signal
processing results in a F-test, which triggers alarm. By
using this approach, many disabled machines and eco-
nomic losses due to false alarms and total shut downs due
to missed alarms will be avoided. However, further im-
provements are needed for implementing this concept on
real applications. Our idea is to use other types of features
(envelope, entropy indices and etc.) and also to improve
the HI procedure.
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