
ERK'2014, Portorož, B:199-200 199

Real-time ray casting of volumetric data

Žiga Lesar
University of Ljubljana,

Faculty of Computer and Information Science
E-mail: zl7962@student.uni-lj.si

Abstract
In this paper we present acceleration structures and tech-
niques for real-time ray casting of large volumetric data
sets, such as those obtained by CT or MRI scans. Ray
casting is a well-known method for efficient volume ren-
dering, as it produces quality images using simple ge-
ometric algorithms. Since a lot of computational time
is used for determining surface intersections and data
sampling, we employ different speedup methods, such as
adaptive sampling and sparse casting. For achieving de-
sired rendering quality we use the regula falsi method
along with trilinear interpolation for zero-crossing re-
finement, Monte-Carlo ambient occlusion estimation and
prefiltering with a gaussian kernel. Aforementioned meth-
ods and algorithms have been implemented with OpenCL,
thus exploiting the highly parallel nature of ray casting,
while trying to achieve interactive rendering rates. We
also compare the results obtained with different visualiza-
tion concepts - isosurface extraction, maximum intensity
projection, and alpha compositing. We tested our meth-
ods on medical data sets, specifically angiograms.

1 Introduction
Volume rendering is a term for different approaches used
to visualize volumetric data - 3D discretely sampled im-
ages usually obtained by medical imaging or numerical
simulation. A number of different methods are used for
the job, including splatting [10], texture-based render-
ing [1], conversion to triangular meshes (e.g. marching
cubes [4]) etc. One of the oldest and most widely-used is
ray casting, introduced in 1982 by Scott Roth [9]. All of
these methods rely on more or less direct evaluation of the
rendering integral. Some of them strive for visual quality
of the rendered image (ray casting), while others aim for
speed and performance (marching cubes, texture-based
approaches). Although ray casting is a computationally
intensive method, it can be easily parallelized for execu-
tion on the GPU, allowing us to render high-quality im-
ages relatively quickly. With the widespread use of med-
ical imaging as support in making diagnoses came the
need for fast and quality visualization of acquired data.
For this purpose many acceleration structures have been
developed over the years, most of them exploiting object-
space and screen-space coherence, as well as neglecting
irrelevant information.

2 Method
Volumetric data can be thought of as sampling of a con-
tinuous signal f : R3 → R. With a high enough sampling
rate we are able to reconstruct the original signal exactly
by using a 3D analogue of a sinc filter [6]. However, since
the sinc function has infinite extent, exact reconstruction
requires taking all the samples into consideration, which
shows to be too expensive. In practice, we use simple fil-
ters to achieve a “good-enough” result. Box filter (near-
est neighbour) and tent filter (trilinear interpolation) are
used in our implementation, as it turns out they are a good
trade-off between speed and resulting image quality. The
data can optionally be prefiltered with a gaussian kernel
to smooth out any unwanted features in the data. In the
following text the term plain sample is used to denote
sampling with nearest neighbour filtering. Interpolation
sampling takes 8 plain samples and some computation
time.

To project a volume onto the projection plane we need
a camera object, which holds a position and orientation
in 3D space. We use this information to cast rays into
the scene, sampling the volumetric data uniformly along
the way. To combine the sampled values into the final
color we use different compositing schemes, briefly de-
scribed below. Each one has unique properties, which
can be taken advantage of to speed up the rendering pro-
cess.

2.1 Isosurface extraction
First-hit compositing scheme, also known as isosurface
extraction, is the process of finding the set of points p ∈
R3, for which f(p) = µ. The value µ is called the iso-
value and can be set at runtime by the user. Since the
signal is assumed to be continuous and band-limited, the
isosurface is a smooth closed set in R3.

While we are sampling the data along a ray in dis-
crete steps, we check whether the sampled value exceeds
the set threshold µ. When this condition is satisfied, we
know that the isosurface lies between the last two sam-
pling positions and we can stop the ray marching proce-
dure. Then we can further refine the zero-crossing using
conventional numerical methods. We have chosen reg-
ula falsi1, since its assumption of linearity of the function

1http://en.wikipedia.org/wiki/False_position_method



200

makes it an ideal complement to our trilinear sampling
choice. After 4 iterations of regula falsi, we shade the
point on the isosurface using the Phong shading model
[7]. To estimate the surface normal used in the shading
procedure, we take 32 plain samples, which are used to
estimate the gradient ∇f(x) in 8 points with a central dif-
ference formula, and are then linearly interpolated with
the same factors as sample values.

Shading is quite an expensive process, but it also adds
a lot to depth perception of the rendering. Striving for vi-
sual quality this can further be extended with ambient oc-
clusion, for which we have implemented a Monte-Carlo
estimator. The estimator checks for near-distance occlu-
sion in a number of different directions on the hemisphere
surrounding the intersection point.

2.2 Maximum intensity projection
Maximum intensity projection (MIP) is a very fast com-
positing scheme, where we take the maximum value of
the function on the viewing ray and project it on the screen
using a color, which corresponds to the maximum value.
Using interpolation for sampling does not contribute greatly
to the final image, so plain samples are enough to get a
good rendering. Optionally we can segment the data us-
ing simple thresholding, to hide irrelevant information.
Compared to other compositing schemes MIP conveys
the least amount of depth information, but due to its sim-
plicity and ease of implementation it is still one of the
most popular ways to visualize volumetric data.

2.3 Alpha compositing
This is a generalization of other compositing schemes,
where we may use a so-called transfer function to map
sample values to color and opacity. We have implemented
the simplest form of alpha compositing with plain sam-
pling and no shading. Front-to-back compositing was im-
plemented, as described by [8]. A huge improvement in
terms of performance can be achieved by early ray termi-
nation. The idea is to stop the sampling when the alpha
reaches a certain threshold. We have chosen the value
0.95, as the last 5% makes almost no difference in the fi-
nal image, though performance increases are not so sub-
tle (in our tests up to 80%, depending on the volume and
transfer function).

2.4 Exploiting screen-space coherence using sparse
casting

Most of the time adjacent pixels hold similar colors or
the color changes gradually. We can take advantage of
this fact by casting rays for every k-th pixel on screen (in
each direction) and interpolating the results to generate
colors for intermediate pixels. In theory this means a k2

speedup. A downside of this approach is that we may
miss fine features that are not wider than k pixels when
projected on screen. This may present a problem in some
specific domains where fine precision of the rendering is
of great importance, but users are generally not interested
in pixel-perfect images.

Sparse casting does in fact produce somehow blurry
images, a side effect caused by interpolation of colors

in areas where otherwise sharp features should be pre-
served. We can overcome this problem by replacing in-
terpolation with ray casting if we detect color gradients
larger than some user-specified threshold.

3 Conclusion and future work
In this work we presented the possibilities for accelerat-
ing the ray casting procedure. GPU execution itself is
a major improvement over CPU implementations, taking
the parallel nature of ray casting into account. This comes
at a price though, as GPUs are not designed for executing
complex branching and control flow statements, meaning
we have to avoid those as much as possible. Despite these
limitations we can still make GPU ray casting efficient
by exploiting coherence and neglecting irrelevant infor-
mation, for example by early ray termination and sparse
casting. While this affects rendering quality it effectively
reduces the amount of required samples and operations
needed to produce the image.

We are in fact only scratching the surface of what is
possible. Future improvements in form of advanced hier-
archical structures (e.g. octrees, [5]) could further mini-
mize the number of iterations in the ray marching loop.
We could also use the same hierarchy for adaptive sam-
pling as described in [2]. Screen-space coherence could
further be improved by beam optimization [3]. Employ-
ing a C-buffer [11] can enable us to benefit from tempo-
ral coherence to increase performance of ray casting with
smooth camera animations.

References
[1] A. Van Gelder and K. Kim. Direct volume rendering with shading

via three-dimensional textures. Proceedings of the 1996 Sympo-
sium on Volume Visualization, pages 23–30, 1996.

[2] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias
Guitián. A single-pass GPU ray casting framework for interac-
tive out-of-core rendering of massive volumetric datasets. Visual
Computer, 24:797–806, 2008.

[3] Samuli Laine and Tero Karras. Efficient sparse voxel octrees.
IEEE Transactions on Visualization and Computer Graphics,
17:1048–1059, 2011.

[4] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. ACM SIG-
GRAPH Computer Graphics, 21:163–169, 1987.

[5] Donald Meagher. Geometric modeling using octree encoding.
Computer Graphics and Image Processing, 19:85, 1982.

[6] Daniel P. Petersen and David Middleton. Sampling and recon-
struction of wave-number-limited functions in N-dimensional eu-
clidean spaces. Information and Control, 5:279–323, 1962.

[7] Bui Tuong Phong. Illumination for computer generated pictures.
Communications of the ACM, 18:311–317, 1975.

[8] Thomas Porter and Tom Duff. Compositing digital images. ACM
SIGGRAPH Computer Graphics, 18:253–259, 1984.

[9] Scott D Roth. Ray casting for modeling solids. Computer Graph-
ics and Image Processing, 18:109–144, 1982.

[10] Lee Alan Westover. Splatting: A Parallel, Feed-Forward Volume
Rendering Algorithm. PhD thesis, University of North Carolina,
1991.

[11] Ilmi Yoon, Joe Demeres, Taeyong Kim, and Ulrich Neumann. Ac-
celerating Volume Visualization by Exploiting Temporal Coher-
ence. 1997.


