
ERK'2014, Portorož, B:96-99 96

Towards a large-scale category detection with a distributed

hierarchical compositional model

Domen Tabernik1, Matej Kristan1, Marko Boben1, Aleš Leonardis1,2

1Faculty of Computer and Information Science, University of Ljubljana
2CN-CR Centre, School of Computer Science, University of Birmingham

{domen.tabernik},{matej.kristan},{marko.boben},{ales.leonardis}@fri.uni-lj.si

Abstract

In this paper we evaluate a visual object detection sys-

tem implemented on a distributed processing platform, pre-

sented in our previous work, with the goal of assessing the

scalability of the system to a large-scale category detection.

While state-of-the-art detection methods based on sliding

windows may not be capable of scaling to a higher number

of categories, we provide initial evidence that using a hi-

erarchical compositional method called learned-hierarchy-

of-parts (LHOP) may be capable of scaling to a higher

number of categories. We show with the library trained on

an MPEG-7 Shape database that the method is capable of

scaling from a system with 5 categories and 6 second av-

eraged response time to a system with 70 categories and

averaged response time of 27 seconds.

1 Introduction

The continuous improvements in hardware has enabled avail-

ability of cheap and plentiful computational power, which

in the field of computer vision has been utilized to enable

large-scale image recognition. The latest benchmark datasets

for visual object classification, such as ImageNet [2] with

around 15 million images and 20.000 classes, would not

have been possible to process without an increase in com-

putational power and, in particularly, without an ability to

process distributed over a cluster of machines. Implement-

ing computer vision algorithms in a cloud environment has

also enabled such algorithms for the use in web-services

where new applications can exploit powerful computer vi-

sion algorithms. For instance, such popular web-services

include Google Image Search1 , TinEye2 and Microglossa3

with an ability to find images based on similar features, or

Google Goggles4 with its ability to identify text and logos

among other properties.

However, such online services rely only on simple clas-

sification algorithms and do not utilize any advanced vi-

sual object detection or localization algorithms. Having an

1http://images.google.com/
2http://www.tineye.com
3http://www.macroglossa.com
4http://www.google.com/mobile/goggles

��������	 �
�����	 �
�����	�������

�������

������
�����
������		

�������� �������

������������	


��
��������

�����

����� ����

���������

���	
���

Figure 1: An overview of the system with front-end web-service

and back-end implementation of the object detection on a dis-

tributed processing platform.

ability to do a more powerful object localization and detec-

tion would open up a possibility for new applications, such

as a backend services for different robotic vision systems,

where localization of objects is an important aspect. A main

reason for the lack of localization in such systems can be

contributed to a complexity of detection algorithm which

would require a significant amount of computational power.

For instance, in image classification one of the state-of-the-

art approaches [6] relies on a 200.000 dimensional descrip-

tor composed from HOG [1] and LBP [7]. Applying this

to a localization with sliding windows would increase com-

putational complexity by more then 100.000 fold, as each

image would contain anywhere from 10.000 to more then

100.000 windows. In other state-of-the-art detection sys-

tems, such as deformable parts model [3], increased com-

putational complexity can be mitigated with a trade-off be-

tween sliding windows and lowered feature dimensionality.

However, such systems are still not fully scalable to higher

number of categories as each category has to be searched



97

���������	


���
�		

�����

���

�����	����������	
���

	������

������

��������	

���������

��

���������	�
��


��� !"�#$���%

��������	

��&�����

���

���

	���'��(�������

��

���������	�
��


��

��

��
� 
!"�
���
���

��
��

�)���
%

	�
��'
��(
��
��
��
� ���������	�
��
��

� !"�*+,-."

�����"��&%

��

��

���

���������	
�����

��
��
�
	����	
�����

	���'��(�������
���

 !"�
*+,-.

"

����
�"��

&%

	���'��(
�������

Figure 2: Overview of the first two steps in the topology: the LHOP and the HoC steps.

independently. Scaling to more then 1000 categories would

require 1000 fold increase in computational time, with even

more time required if different viewpoints are treated as

separate classes.

The issue of computational complexity of detection al-

gorithm was addressed in our previous work [9, 8], where

a web-service running on a distributed processing platform

was proposed. To enable detection on real-time distributed

processing platform and a scalability to a higher number

of categories, a hierarchical compositional method, called

learned-hierarchy-of-parts [4] (LHOP), was implemented

instead of a computationally expensive sliding windowmeth-

ods. Additionally, to handle many false positive detections

known to occur in such hierarchical methods, a hypothesis

verification with HoC descriptor was proposed. This added

additional computational time as a non-linear support vec-

tor machine was used to perform hypothesis verifications,

however, the hypothesis verification was performed only

on regions corresponding to specific detections and did not

present any significant performance bottlenecks. The pre-

sented web-service was shown to produce a response time

of around 2 seconds for image classification with 100 cat-

egories. For object detection a 10 seconds response time

was achieved, however, only two categories were used in

that evaluation and an ability to scale was not shown.

In this work we evaluate the distributed processing plat-

form for object detection proposed in our previous work [8],

however, as opposed to our previous work, we focus on

evaluating a scalability of such system to a higher number

of categories to show a possibility of handling large-scale

image category detection. We evaluate the system by mea-

suring the response time of the library trained on 70 cat-

egories of MPEG-7 Shapes [5] dataset. Additionally, our

contribution can also be found in the modification of a hy-

pothesis verification step to accommodate object detection

for higher number of categories.

The remainder of this paper is structured as follows: in

Section 2 an LHOP implemented on a distributed process-

ing platform with modifications to hypothesis verification

is presented, in Section 3 the evaluation is performed and

in Section 4 a conclusion is provided.

2 A distributed implementation of LHOP

In this section we detail the implementation of the LHOP

detection algorithm in a distributed processing platform.

The algorithm is implemented on top of an Apache Storm5

platform with its computational model consisting of a di-

rected graph, called a topology. As in our previous work [8],

we build our topology from three main steps: (i) an LHOP

step where we process the image and produce hierarchical

compositions, (ii) an HoC step where we extract detected

regions and produce HoC descriptor for each detected ob-

ject and (iii) an SVM step where we classify each descriptor

into pre-trained categories (see, Fig. 1 for overview). How-

ever, the HoC and the SVM steps were further adjusted to

allow for a large-scale category detection.

2.1 The LHOP step

The initial LHOP step remains the same as in [8]. The input

generating spout is implemented with the Request waiting

spout, which communicates with the web-service through

the Beanstalk6 queuing system. The initial request, be-

ing forwarded from the web-service, comes in a form of

a meta-data and a query image (Metadata, Image), with

meta-data containing additional information about the re-

quest. Due to a small workload only one worker is assigned

for this spout.

The initial processing of the request is performed by

the LHOP bolt where each request, emitted by the Request

5https://storm.incubator.apache.org/
6http://kr.github.com/beanstalkd/



98

��������

���
���

���

��������

���
���

	
��������

�
������

����

���

���������

��������

���

	
��
��

����������������

	
��
��

��������������

����� �!�"#$ !�"	$ �%&'�����(

��������

)����������������������

��������	
���

����� �!�"#$ !	"	$ �� ����� �((

��
��� �!�

"#$ !�
"	$ ��

 ����� �((

����� �!	"#$ !�"	$ �� ����� �((

����� �!	"#$ !	"	$ �� ����� �((

���

����� �

*���������(


�����	
���

����� �!�"#$ 

!�"	$ ���(
��*

��	�������	
�����
��� �!�"#$ 

����� ���(

��

��

����������������	��


�������*�������
����� �!�"#$ 

����
� ���(

�������*������� ����� �!�"#$ 

!	"	$ ���(
��*

���

����� �!�"#$ !	"	$ �%&'�����(

Figure 3: The overview of the last step containing SVM related bolts.

waiting spout, is received as (Metadata, Image) tuple by

the LHOP bolt. To ensure even distribution of the workload

a shuffle grouping is used as a connection between the in-

put spout and the LHOP workers (see, Fig. 2). The work

for LHOP bolt consists of computing LHOP compositions

from the input image and emitting results for each scale to

the next bolt. Results are emitted as multiple new tuples,

one for each scale, to ensure detections of each scale can

be further processed in parallel. While in previous work

the LHOP processing had 50 workers assigned, the large-

scale category detection implementation has main perfor-

mance bottleneck in the SVM processing and has therefore

the most workers assigned. The LHOP bolt now has only 7

workers remaining.

2.2 The HoC step

The second step mostly remains unchanged compared to [8],

however, additional output information is returned and over-

head, when 1000 or more descriptors are emitted, is elimi-

nated. As part of the core HoC operation, regions of all the

detected objects are extracted from each input LHOP detec-

tion found at the particular scale and each detected region

is used to generate a HoC descriptor to pass it along to the

next step.

The output is further optimized by returning a batch

of 100 descriptors packed into one output tuple instead of

outputting each descriptor individually. Additionally, the

output is modified to attach the detected object category to

each HoC descriptor. This value will be used in the SVM

step to optimize the required processing. The output of

the HoC bolt now returns multiple tuples, each containing

meta-data, scale identifier, detection identifier and a batch

of HoC descriptors with bounding box and a category in-

formation. Due to low computational requirements this bolt

has only 7 workers assigned.

2.3 The SVM step

With the last step in our topology we perform classifica-

tion of the detection using a Support Vector Machine. The

topology configuration for the SVM step is depicted in Fig-

ure 3. The SVM bolts implementing this have been modi-

fied to enable large-scale category detection. The algorithm

used in our previous work [8] has verified each detection

with all the possible categories and only the best category

has been used as correct one. However, verification of all

categories is not scalable to a large-scale category detection

as the computational time would increase linearly with the

number of added categories. Instead, we can perform hy-

pothesis verification only for the category that was detected,

and avoid verification for any other categories. Addition-

ally, as each bolt, as implemented in [8], was originally in-

tended to perform verification of each detection for multi-

ple categories a parallel workers in one bolt were utilized to

each handle only a subset of categories. While at the same

time each detection was sent to all the workers so that all

the categories could be verified. While this mechanism is

still enabled for any web-service requiring classification of

the whole image, this has been effectively disabled in the

detection process by using only one worker per bolt. How-

ever, as the number of detections outputted by the LHOP

and HoC bolts can substantially increase, we modified the

topology of the SVM step to better handle such increase of

the workload by adding a multiple SVM processing bolts to

process detections in parallel. A new additional bolt, named

SVM-pass, was also added between the HoC bolt and the

SVM-processing bolt. The main task of this bolt is to only

re-route the individual detections into the specific SVM-

processing bolt. To handle a significant increase in number

of detections 20 bolts were assigned. The same number of

workers were also assigned to the SVM-pass bolt.

The remainder of this step is implemented similarly to [8],

with the SVM-grouping bolt performing the task of group-

ing multiple SVM scores from one detections. One bolt is

created for each SVM processing bolt, however, as only one

worker is assigned to each SVM processing bolt, the work

of this bolt is reduced to only passing the results to the next

bolt.



99

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Number of categories

A
v
e
ra

g
e
d
 r

e
s
p
o
n
s
e
 t

im
e
 i
n
 s

e
c
o
n
d
s Response time per number of categories

20 workers

40 workers

60 workers

80 workers

Figure 4: An averaged response time for the object detection per-

formed on a cluster with different number of workers and with

different number of categories.

3 Evaluation and results

The evaluation process was performed on a cluster of three

machines: one machine with 16 CPU cores and two ma-

chines with 32 CPU cores. Combined together 80 workers

were allocated for the Storm topology. Note, that all the ex-

periments were performed with the OpenMP enabled. We

generated LHOP library with up to 70 different visual cate-

gories from the MPEG-7 Shapes [5] dataset. Each category

was incrementally trained, separately from others. Inter-

mediate libraries with accumulated categories were saved

to obtain testing libraries for different number of categories.

Evaluation was performed with the sample image of 512x512

pixels with 7 scales and 10 repeated requests.

The results are reported in Figure 4. With all 70 cat-

egories combined in the library we achieve response time

of around 27 seconds, while up to 5 categories can be de-

tected in 6 seconds. Focusing on an ability to scale, we can

see a slow increase of the response time when new cate-

gories are being added. While pure logarithmic increase of

the response time cannot be claimed yet, a linear increase

with a small slope can be observed. To confirm a possible

logarithmic increase an evaluation with 100, 500 and 1000

would have to be performed.

We can also observe a modest improvement in the re-

sponse time when additional workers are added. The im-

provements are more distinct with the higher number of cat-

egories, however, even in such cases doubling the number

of workers does not reduce the response time in half. This

can be partially explained by the LHOP processing which

is not being distributed over the cluster, but it may also be

an indication of under-utilization of the system and further

improvements could still be gained by optimizing the topol-

ogy.

4 Conclusion

In this work we have performed an evaluation of the ob-

ject detection algorithm, running on a distributed process-

ing platform. The main goal of the evaluation was to asses

the scalability of the hierarchical compositional methods to

a large-scale category detection problem. We have relied

on a learned-hierarchy-of-parts [4] (LHOP) running as a

topology on a Apache Storm platform to provide a detec-

tion algorithm more suitable for detecting higher number

of categories than state-of-the-art sliding window methods.

Our evaluation shows a favorable results for the hierarchi-

cal compositional method as the added categories are only

modestly increasing the averaged response time of the de-

tection.

In our future work we will further increase a the num-

ber of categories to confirm a possible logarithmic increase

of the response time. We also plan to compare such system

to the state-of-the-art sliding windows method, such as De-

formable Parts Model [3], to further show a superiority of

hierarchical compositional method in the large-scale cate-

gory detection problem. We also plan to further optimize

the topology as certain aspects of the results point to the

under-utilization of the whole system.

Acknowledgments. This work was supported in part

by ARRS research program P2-0214 and ARRS research

projects J2-4284, J2-3607 and J2-2221.

References

[1] Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for

Human Detection. In CVPR, pages 886–893, 2005.

[2] Jia Deng, AC Berg, Kai Li, and L Fei-Fei. What does classifying more

than 10,000 image categories tell us? 11th European Conference on

Computer Vision, 5:71–84, 2010.

[3] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva

Ramanan. Object detection with discriminatively trained part-based

models. IEEE transactions on pattern analysis and machine intelli-

gence, 32:1627–1645, 2010.

[4] Sanja Fidler and Ales Leonardis. Towards Scalable Representations

of Object Categories: Learning a Hierarchy of Parts. In CVPR. IEEE

Computer Society, 2007.

[5] Longin Jan Latecki, Rolf Lak, and Ulrich Eckhardt. Shape Descrip-

tors for Non-rigid Shapes with a Single Closed Contour. CVPR, pages

424–429, 2000.

[6] Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, and Timothee

Cour. Large-scale image classification: fast feature extraction and

svm training. Computer Vision and Pattern Recognition, (October),

2011.

[7] Tim Ojala, Matti Pietikhenl, David Harwood, and Laws Texture Mea-

sures. Performance evaluation of texture measures with classification

based on Kullback discrimination of distributionsi. Proceedings of the

12th IAPR International Conference on Pattern Recognition (ICPR

1994), 1:582–585, 1994.

[8] Domen Tabernik, Luka Čehovin, Matej Kristan, Marko Boben, and

Aleš Leonardis. A web-service for object detection using hierarchical

models. In The 9th International Conference on Computer Vision

Systems, 2013.

[9] Domen Tabernik, Luka Čehovin, Matej Kristan, Marko Boben, and

Aleš Leonardis. ViCoS Eye - a webservice for visual object catego-

rization. In Proceedings of the 18th Computer Vision Winter Work-

shop, 2013.


