
ERK'2014, Portorož, B:7-10 7

Comparative analysis of DSM Graphical Editor frameworks: 
Graphiti vs. Sirius 

 

Vladimir Vujović1, Mirjana Maksimović1 and Branko Perišić2 
1Faculty of Electrical Engineering, University of East Sarajevo, Bosnia and Herzegovina   

2 Faculty of Technical Scieneces, University of Novi Sad, Serbia  
 vladimir_vujovich@yahoo.com, mirjana@etf.unssa.rs.ba, perisic@uns.ac.rs  

 
 
Developing languages and tools which depend on 
Domain-Specific Modeling (DSM) methodology, 
represent a hot topic nowadays, but building a set of 
graphical tool is often very complex process which takes 
a lot of time and it often highly depends on developer’s 
knowledge and reliable frameworks. Today, a leading 
role of Integrated Development Environment (IDE) 
tools on market has an open source – Eclipse platform, 
which became de-facto standard and primary choice for 
developing a DSM environment. The choice of user 
interface framework, to solve the traditional problems 
of custom modeling in an elegant fashion, strongly 
influences the development process and system’s 
lifetime costs spent on maintenance. In order to realize 
which of the open source frameworks based on Eclipse 
is better choice, allowing developers to establish a very 
flexible graphical environment for editing the models, a 
comparative analysis of Graphiti and Sirius frameworks 
for developing a DSM Graphical Editor is done with 
aim to define pros and cons of each of them. 
 

1 Introduction 
 A significant factor behind the difficulty of 
developing complex software is the wide conceptual 
gap, between the problem and the implementation 
domains of discourse, which can be reduced using 
Model-Driven Engineering (MDE) [1]. The key fact for 
MDE software development is that system is a model 
consistent with its meta-model [2, 3]. That model is the 
link between the problem domain and solution domain, 
and meta-model represents an abstract model of the 
system that describes the most common definition of the 
model. The key benefits of Model-driven approaches 
are: increased developer productivity, decreased cost (in 
time and money) of software construction, improved 
software reusability and the higher level of software 
maintainability [2].   
 Domain-Specific Modeling (DSM) methodology 
uses models to describe the individual components of 
the domain system, which is usually based on graphical 
or textual description. Considering that communication 
effectiveness can be measured by speed, ease, and 
accuracy in which the information can be understood 
[4], it can be stated that graphical diagrams are believed 
to be more effective than text in the communication 
between end-users and/or domain practitioners [5]. 

Therefore, models are often based on a graphical 
representation and supported by graphical design tools. 
A set of DSM tools enables user to create models relied 
on metamodels, and usually, based on created models, 
generate a certain part of code using generators.   
 Graphical Model-Driven Engineering tools have 
become extremely popular concerning the development 
of applications for a large number of domains from 
natural language processing to computer vision in 
bioinformatics. Using a graphical model, which is a 
popular and well-studied framework for compact 
representation of a joint probability distribution over a 
large number of interdependent variables [6], facilitates 
better understanding of a problem-domains. It can be 
stated that Model-Driven visualization provides model 
driven engineers with the tools and technologies to 
integrate interactive visualizations in their systems. By 
separating the customization and configuration of the 
view from its underlying model, engineers can explicitly 
state how their data should be displayed [7].  
 Today a leading role of MDE tool on market has the 
open-source Integrated Development Environment 
(IDE) - Eclipse, which supports a wide range of 
frameworks for development and usage, depending on 
problem type. An Eclipse Modeling Framework (EMF) 
provides an object graph for representing models, as 
well as capabilities for (de)serializing models in a 
number of formats, checking constraints, and generating 
various types of tree editors for use in Eclipse. The 
Graphical Editor Framework (GEF) and Draw2D 
provide the foundations for building graphical views for 
EMF and other model types [8]. The Graphical 
Modeling Framework (GMF), by encapsulating GEF 
and Draw2D (Fig. 1), provides a tool for creating 
graphical editor with a high degree of flexibility. 
Creation of editor in GMF is often complex and highly 
depends on Java, XML and Eclipse plug-in knowledge. 
By using Graphiti framework, that hides GEF's 
complexities from the developer and bridges EMF and 
GEF (Fig. 1) to ease and speed up the development of 
graphical editors, it is possible to design homogeneous 
graphical editors that visualize an underlying model 
based on a tool-defined graphical notation [9]. A big 
disadvantage of all mention frameworks (GMF, GEF, 
Graphiti) is a high level of required knowledge in 
domain of Java object oriented language, EMF and 
Eclipse plug-in development. On the other side, Sirius 



8

 
framework, offers a solution for rapid development of 
Graphical tool for DSM, without need for understanding 
any of backend processes [10].  

 
Figure 1.  Hierarchy of Graphical Model-Driven Engineering 

tools 

 In this paper,  the emphasis is a comparative analysis 
of Graphiti and Sirius frameworks for developing a 
DSM Graphical Editor. Thus, the rest of this paper is 
structured as follows. Section II  describes the state of 
the art, namely Graphiti and Sirius. In section III a 
comparative analysis of chosen frameworks is 
performed in order to define pros and cons of each 
technology, while Section IV concludes the paper and 
states the roadmap for evaluation and other issues of 
future work. 

2 State of the Art 
 Building a very flexible graphical editor for editing 
the models is really a labor-intensive task. In this paper, 
two DSM Graphical Editor frameworks, Graphiti and 
Sirius, are considered and compared, in order to define 
pros and cons of each of them. 
 Graphiti is framework for creating graphical 
diagram editors which doesn't do any code-generation 
and is written in plain Java. It takes a different approach 
than both GMF and GEF. Instead of requiring the user 
to use the Model-View-Controller paradigm, it introdu-
ces so-called features: creation, deletion and changing 
of business model elements and creation, deletion and 
updating of visual elements. On the other hand, Graphiti 
provides similar concepts to GEF (its internals are built 
on GEF), but again they are provided uniformly through 
features. It means that edit policies, requests and 
commands are invisible to the user of Graphiti. After 
entering features that are supposed to make changes to 
state, a transaction recorder is added to the resource tree 
so that one doesn't need to use commands manually. 
The developer generally doesn't need to deal with the 
state of the editor. It can be summarized that Graphiti 
provides an easy entrance to creating graphical editors 
through a simple and contained API [11]. It is important 
to mention, that for each domain object, the generator 
creates Add, Create, Layout, UpdateFeature etc., which 
altogether consist of about 400 lines of code per domain 
objects. This can be reduced approximately 20 times 
using Spray framework on top of Graphiti [12]. 
 Sirius framework, which is built on top of GMF, is 
used to create, visualize and edit models using 
interactive editors called "modelers". Depending of 

visual representations, Sirius supports three different 
dialects (kinds of representations): diagrams (graphical 
modelers), tables, and trees (hierarchical representa-
tions), but new dialects can be added through 
programming [13]. Because problem-domain usually 
makes necessary the collaboration of people with 
different concerns, a Sirius provides possibility of 
analysis, roles and concerns of same data using different 
viewpoint on the same domain model. A Sirius provides 
tools to specify the viewpoints which are relevant for 
user business domain, whatever it is. Due to Sirius uses 
domain specification, which is not strictly in the scope 
of Sirius, it provides a graphical modeler for creating a 
DSM, which defines concepts and their relations in the 
abstract. After defining DSM models, Sirius allows 
easily creation of specific concrete representations of 
these models, and representations can be presented in 
more than one diagrams, tables, matrices (cross-tables) 
or hierarchies (trees). The representations are not static, 
and they complete modeling environments where user 
can create, modify and validate their designs. It can be 
logically organized in viewpoints, which can be able or 
disabled by end-user, with purpose to provide a 
different, logically consistent, view on the same model. 
It can be concluded that Sirius simplifies the product, 
reduces design time and rapidly increases the overall 
productivity of building a domain-specific graphical 
editor. It uses Acceleo [14] as recommended language 
for expressions' defining. By using a Java class as Java 
Extensions and Acceleo queries, defined in .mtl files, 
Sirius supports customization according to the particular 
user needs in form of service methods which is 
available inside all the representations defined in the 
viewpoint. Considering that Sirius encapsulates GMF, 
user can customize the program code on GMF level too. 
However, this is an advanced feature, because user must 
have a deep knowledge of GMF. 
3 Which framework is better, Graphiti or 

Sirius? 
Already performed comparative analysis of DSM 

solutions were discussed in several papers [11, 15, 16]. 
First step of these analyses is setting the criteria on 
which the comparison will be performed. In work [15] 
authors have relied on research performed by P. 
Mohaghegh and Ø. Haugen [16], who define two 
approaches for evaluation: 

- qualitative approach which cover case studies, 
analysis of the language and the tool by experts 
for various characteristics, and monitoring or 
interviewing users, and  

- quantitative evaluation based on several 
identified metrics (effort, understandability, 
usability etc.).  

The author of [11], as authors of work [15], focuses 
only on a certain criteria, which are most relevant in the 
context of comparative analysis of DSM Graphical 
Editors. Because both frameworks, Graphiti and Sirius, 
become a part of Eclipse Modeling Project in Eclipse 



9

Luna - 4.4 version (Graphiti v0.11 incubation faze and 
Sirius v1.0), a question is which of this framework is 
better than other and why?  
An evaluation criteria is setup based on mention works 
[11, 15] as: 

- Evaluation of applicability for supporting tree-
based methods depends on manually running 
and testing editors, reading the official 
documentation and relies on experience of 
editors' development. 

- Development time - a time spent for creating a 
tool. 

- Maintainability - a time spent for maintaine a 
tool (code size, dependences, making a change 
to the editors).  

- Customizability - customization of visualiza-
tion.  

3.1 Evaluation of applicability 

 A results for Graphiti framework will be taken from 
paper [11], updated with new version of framework and 
compared with Sirius. The main goal of this type of 
evaluation is to present possibility of frameworks in 
simple tasks. 

Table 1. Evaluation of applicability for supporting tree-based 
methods 

Requirement Best solution 
Replaces Excel-tool - 

Propagation of values Equal 
Learnability Sirius 

Easy to understand Equal 
Outline Equal 
Layout Equal 

Simple creation Sirius 
Editing Sirius 

Copy and paste Sirius 
Hiding of nodes Sirius 

Search Sirius 
Easy to read Sirius 

Zooming Equal 
Persistence Sirius 

Validation EI Equal 
Validation QCF Equal 

QCF override Equal 
Resource change tracking Equal 

Traceability None 
Major OSes support Sirius 

Free of cost Equal 
Total Graphiti: 0 

 Sirius: 9 

As can be seen from analysis presented in Table 1. 
a Sirius based editor provides the most of required 
features, which means that Sirius is better option for 
creating a DSM editor.  
3.2 Development time 

 Both editors rely on EMF, but for simple tasks, 
knowledge of Draw2D and GEF or GMF is not 
required. Creating an editor in Graphiti framework has 
done by implementing a core functionalities of object in 
Java language (about 400 lines of code per domain 
object [12]), which for large DSL can be very 

robustness. Using a Spray framework, which 
encapsulate a Graphiti framework, a creation is 
simplified and reduced on only 20 lines of code per 
object [12]. A Spray provides three different DSLs for 
creating an editor: Spray Core, Shape and Style. 
Although they are simple languages, programmers must 
learn them, and that complicates the development 
process.  
 Unlike Graphiti, Sirius works with models which 
describe semantics of editors - structure, appearance and 
behavior of dedicated representations and associated 
tools.  For creation of editor, no Java code is necessary. 
A main disadvantage is need for interpreted expressions 
which will be evaluated at runtime to provide a behavior 
specific to domain and representations. An expression 
can be written in Acceleo [14], OCL [17] or Java 
language. 
 For difficult tasks, in case of both frameworks, a 
deep knowledge of GEF and GMF is required (A Sirius 
encapsulates GMF instead of GEF and because of that a 
difficult task is simpler to realize). 
3.3 Maintainability 

 As it mention in [11], a maintenance is measured by 
code size, dependencies, and making a change to the 
editor.  
 Determination of code size for Graphiti framework 
can be easily done, because every object must 
implements its functionality which is near 400 lines of 
code per domain object [12]. Using a Spray, lines of 
code can be significantly reduced. On the other hand, a 
Sirius framework works with models which describe 
objects. A number of code lines depend on 
customization and Acceleo, OCL or Java expression.  
 Both of frameworks rely on GEF, Draw2D or GMF, 
as well as of EMF and Eclipse platform. Because of 
that, both frameworks depend on core Java and Eclipse 
platform extension. In this case, none of analyzed 
frameworks has a better position than the other. 
 In case of customization of objects’ specific 
features, both frameworks provide a relatively good 
possibility. With Graphiti framework, customization 
can be done directly on code. The main problem is to 
find object and part of code which will be modified. 
With Sirius, a simple modification can be done using 
object properties inside model. However, complex 
requirements typically require changes to the EMF and 
GMF code, what can be very complicated. 
3.4 Customizability  

 In context of customizability of graphical editor, the 
emphasis is on customization of graphical objects 
visualization and their behavior. Graphiti framework 
customization of graphical elements is provided by 
using a Java code and extending an AbstractAdd-
ShapeFeature class. Features like Update, Remove, 
Delete, Move, Resize, Layout, Connection and Anchors 
must be implemented by extending appropriate class. A 
style of object is defined using predefined 2D graphical 
object. Using Spray over Graphiti, a definition of shape 
is described with Shape DSL which is consistently used 
for node elements as well as for connections. The Shape 



10

 
DSL also defines connections and placing of objects and 
reduces time for objects’ creation and implementation. 
 For diagram configuration, Sirius framework uses a 
Diagram Description element (inside a Viewpoint) and 
its sub-elements (which describe the layers, graphical 
elements and tools). The content of the Diagram 
Description is mostly made of graphical elements’ 
mappings, organized in layers, and their associated 
tools. In addition, it can also contain validation rules, 
filters and layout configuration information [13]. There 
is a set of predefined styles for a node (Square, 
Lozenge, Ellipse, Basic Shape, Note, Gauge, Image) 
and Custom Style which are implemented in Java. All 
additional styles (borders, colors, decorations, edges, 
etc.) are described by properties. A Sirius model can be 
used as WYSIWYG for direct testing of created editor. 

4  Conclusion 
 Applying DSM methodology, which uses models to 
describe the individual components of the domain 
system, is one of the main topics nowadays. A model 
presents and describes element of meta-model, which 
depends of problem domain. Building a set of tools for 
creating and editing these models is not usually a simple 
task. A lot of graphical frameworks can be found on 
market, and all of them have their pros and cons.  
 In this paper, two of open source graphical 
frameworks are presented and compared. Both of them 
belongs to EMF, and can be found in Eclipse Luna 
distribution.  
 After comparative analysis based on selected 
criteria, next conclusion can be stated:  

- both frameworks can be used for building an 
user friendly graphical editor based on 
proposed DSL, 

- both editors provide a lot of required features, 
but Sirius based editor provides the most of or 
the better features, 

- Sirius uses a model for describing elements of 
editor instead of Java code, thus developing is 
faster and less error prone, 

- for difficult tasks both frameworks must use  
GEF or GMF, 

- both frameworks depend on GEF or GMF, 
- a relatively good support for customization, 
- Sirius is more customizable than Graphiti, 
- Sirius is WYSIWYG. 

 In summary, a Sirius framework is a better choice 
for building a DSM Graphical Editors because it 
provides the most of or the better features than Graphiti. 
In addition, it is more customizable, allows the user to 
view something very similar to the end result while the 
editor is being created. Lastly, by using a model for 
describing elements of editor instead of Java code, it 
makes DSM Graphical Editors’ development process 
faster and less error prone. Future work will be focused 
to frameworks' evaluations based on the rest of criteria 
proposed in [16], and testing created editors by users, in 
order to define as much as possible frameworks' 

strengths and weaknesses and making certain 
recommendations. 

References 
[1] R. France and B. Rumpe, “Model-driven Development of 

Complex Software: A Research Roadmap”, Future of 
Software Engineering, pp. 37-54, 2007  

[2] S. W. Liddle, “Model-Driven Software Development”, 
June 2010. [Online]. Available:  
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
.172.5995&rep=rep1&type=pdf 

[3] M. Brambilla, J. Cabot and M. Wimmer, Model-Driven 
Software Engineering in Practice, Morgan & Claypool 
publishers, 2012 

[4] L.-O. Johansson, M. Wärja, H. Kjellin and S. Carlsson, 
“Graphical modeling techniques and usefulness in the 
Model Driven Architecture: Which are the criteria for a 
“good” Computer independent model? ”, Proceedings of 
31th Information Systems Research Seminar in 
Scandinavia: public systems in the future: possibilities, 
challenges and pitfalls, Sundsvall, 2008  

[5] D. Moody, “What makes a good diagram? Improving the 
cognitive effectiveness of diagrams in IS development,”  
15th international conference of Information Systems 
Development, Budapest, Hungary, Springer 2006 

[6] A. Deshpande, L. Getoor and P. Sen, “Managing and 
Mining Uncertain Data: Chapter 1- Graphical models for 
uncertain data,” Springer 2009 

[7] R.I. Bull, “Model Driven Visualization: Towards a 
Model Driven Engineering Approach for Information 
Visualization,” PhD Thesis, University of Victoria, 2008 

[8] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. 
Grose, Eclipse Modeling Framework: A Developer's 
Guide, Addison Wesley, 2003  

[9] C. Brand, M. Gorning, T. Kaiser, J. Pasch and M. Wenz,  
“Graphiti - Development of High-Quality Graphical 
Model Editors,” Eclipse Magazine, [Online]. Available: 
http://www.eclipse.org/graphiti/documentation/files/Eclip
seMagazineGraphiti.pdf 

[10] E. Juliot and J. Benois, “Viewpoints creation using Obeo 
Designer or how to build Eclipse DSM without being an 
expert developer?,”  Obeo Designer Whitepaper, 2010, 
[Online]. Available: http://www.obeo.fr 

[11] I.Refsdal, “ Comparison of GMF and Graphiti based on 
experiences from the development of the PREDIQT 
tool,”  Master thesis, University of Oslo, 2011 

[12] F. Filippelli,S. Kollosche, M. Bauer, M. Gerhart, M. 
Boger, K. Thoms and J Warmer, "Concepts for the 
model-driven generation of graphical editors in Eclipse 
by using the Graphiti framework", [Online]. Available:  
http://spray.eclipselabs.org.codespot.com/files/SprayPape
r.pdf 

[13] Sirius Documentation, [Online]. Available:  
http://www.eclipse.org/sirius/doc/ 

[14] Acceleo, [Online]. Available: 
 http://www.eclipse.org/acceleo/ 

[15]  A. E. Kouhen,C. Dumoulin, S. Gérard, P. Boulet, 
"Evaluation of Modeling Tools Adaptation", hal-
00706701, version 1 - 11 Jun 2012 

[16] P. Mohagheghi and Ø. Haugen, "Evaluating Domain-
Specific Modelling Solutions", Advances in Conceptual 
Modeling – Applications and Challenges, Lecture Notes 
in Computer Science, 2010, Volume 6413, Pages 212-
221 

[17] Object Constraint Language (OCL), [Online]. Available: 
 http://www.omg.org/spec/OCL/ISO/19507/PDF  


