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Abstract

We compare forecasting models (linear regression, regu-

larized linear regression, and random forests) for ozone

forecasting using meteorological and air pollutant mea-

surements, forecasts of meteorological parameters, and

air mass back trajectories or, alternatively, only the pre-

vious day’s pollutant concentrations from other stations.

Results show that random forests improve on linear meth-

ods on most, but not all sites. Results of forecasting using

the previous day’s concentrations from stations across

Europe show substantial predictive power.

1 Introduction

Ground level ozone is created photochemically when ni-

trogen oxides (NOx) and volatile organic compounds re-

act with UV-radiation from sunlight [1]. During warmer

parts of the year, when concentrations rise significantly,

ozone can affect overall mortality and morbidity [2]. To

minimize the negative health effect, most countries accu-

rately monitor ozone levels and alert the public. The Eu-

ropean parliament passed Directive 2008/50/EC which

states that the inhabitants of European countries have to

be warned about expected exceedances of the information

and alert threshold (180 µg/m3 and 240 µg/m3, respec-

tively), for the current and following day. This legislature

created the need for ozone forecasting systems.

Ozone forecasts are usually made using dispersion

models [3]. They provide a suitable spatial and tempo-

ral display, but are highly dependent on meteorological

models and on emission inventories and usually do not

have a good spatial resolution. For forecasting ozone lev-

els at specific locations, statistical or machine learning

models are frequently used. The most popular method

used for ozone modelling are artificial neural networks

[4, 5, 6]. Non-linear regression [7], support vector ma-

chines [4, 8] and Bayesian networks [9] were also used.

In comparative studies, non-linear models outperformed

linear models [4], non-linear regression and neural net-

works performed comparably to each other [7]. Most

models used meteorological parameters, ozone concen-

trations, and emission measurements as inputs [4, 5, 6].

Forecasting pollutant concentrations is a standard

forecasting task. However, there are several issues that

make the task more difficult in practice. These issues can

be broken down according to their corresponding steps

in the forecasting pipeline: Data transformation - some

data relevant to the forecast are structured and have to be

transformed before they can be used as inputs. In partic-

ular, air mass movement, which is most often provided as

a path of geographical locations over time (that is, trajec-

tories). Missing values - due to faults in meteorological

equipment, missing values are frequent and have to be

dealt with in ways other than simply discarding the entire

input. Feature subset and forecasting model selection -

the optimal choice of features and a forecasting model

might vary from forecasting site to forecasting site.

Therefore, a practical approach towards forecasting

pollutant concentrations would have to be a modelling

framework with different modelling options at each mod-

elling step and an automated model selection and param-

eter tuning procedure that is robust in terms of over-fitting

the data. This paper is a step in that direction, while also

providing some practical results relevant to forecasting

ozone at Slovenian sites and in general.

2 Methods

2.1 Transforming air mass trajectories

Each backward trajectory is described as a path of spa-

tial coordinates (x, y, z)i, i = 0 . . .m, calculated at reg-

ular intervals going back in time with increasing i. The

coordinate (x, y, z)0 is the station’s location and can be

ignored. In practice, we can assume that all trajectories

will be of the same length m and that index i always de-

notes the same time backwards from arrival at time 0.

The used air-mass trajectories are 2D on constant pres-

sure surfaces. The following options were implemented

for transforming air mass trajectories:

Trajectories are not used (NONE). Self-explanatory.

Clustering-based grouping (CLUST). This is based on

a very common technique for converting trajectories into

categorical variables before statistical analysis [10]. We

use kmeans clustering from the R core packages [11] to

group trajectories. The group assignment is then used as

a categorical input variable. The number of clusters is

treated as a hyperparameter (in all experiments it was set

to 5, based on prior experience). Note that the dissimi-

larity of trajectories is defined as the Euclidean distance

between trajectories if they are represented as vectors in

R3m by stacking all the x, y, and z coordinates. Z-axis
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values are scaled so that their scale matches the x and y
coordinates’ scales (that is, equal importance is assigned

to all coordinates).

Using raw coordinates (XYZ). For each trajectory path

point, we add input variables, one for each coordinate x,

y, and z. Therefore, 3m new input variables are added.

2.2 Dealing with missing values

We used single imputation (SINGLE), where missing val-

ues are replaced with the mean (numeric) or mode (cate-

gorical) of the input feature on the learning data, or multi-

ple imputation (MULTI) by fitting models to missing data

(see aregImpute from the Hmisc package [12]).

2.3 Prediction algorithms

The following statistical and machine learning algorithms

are currently included in the framework (the first two

serve as a baseline for comparison):

Previous day (PERSISTENCE). A simple model where

the latest available concentration in the training set (typ-

ically the previous day’s) is used as the forecast. Serves

as a baseline for comparison.

Predicting the mean (MEAN). A simple model where

the training set mean is used as the forecast.

Linear regression (LR). Classic least-squares linear model

as implemented in lm from the R core packages [11].

Categorical input variables are dummy-coded (that is, re-

placed by k− 1 binary indicator variables, where k is the

number of categories).

L1-regularized linear regression (L1). L1-norm type

regularization, also known as the lasso. We used the im-

plementation in lars from the lars package [13]. The

regularization parameter is selected using 10-fold cross-

validation on the training set. Dummy-coding is used.

Random forests (RF). Breiman’s random forests algo-

rithm [14] as implemented in randomForest from the

randomForests package [15]. Non-liner methods have

performed best on forecasting pollutants, but, unlike arti-

ficial neural networks, RF is robust both in terms of over-

fitting and in terms of tuning hyperparameters.

2.3.1 Input variable subset selection

Currently, input variable subset selection is an option

only with the LR model (the other algorithms are by de-

sign robust to overfitting). We use stepwise (forward)

selection with the AIC criterion as implemented in step

from the R core packages [11]. The maximum number

of features to select is treated as a hyperparameter (it was

set to 5 and 10, separately; not restricting the number of

maximum results in overfitting).

2.4 Model evaluation process

The evaluation process is time-respecting (only data avail-

able prior to the day we are forecasting for are made

available to the model) using a rolling window with step

size 1 (after a forecast is made for a particular day, that

day is added to the training set and we move to the next

day). The first 50 days are used as the initial training

set and are not used in the evaluation. Mean squared er-

ror is used to evaluate the point forecasts and standard

errors of the estimated errors are provided to aid in the

interpretation of the differences between models.

3 Data

We used two separate sets of data. The first set are ozone

concentration data and other relevant input variables for

eight Slovenian sites. These data are what the current

ozone forecasts are based on. The main purpose was to

measure how accurately we can forecast ozone concen-

trations at these sites. The second set are pollutant con-

centration data only, but from a large number of European

sites. The main purpose was to explore if data from other

stations contain some predictive power.

3.1 Eight Slovenian sites

Ozone forecast models for 1-hour daily maximum con-

centrations were developed for eight Slovenian moni-

toring sites (Koper, Nova Gorica, Otlica, Ljubljana, Kr-

vavec, Iskrba, Hrastnik and Murska Sobota) taking into

account measured air quality and meteorological data,

weather forecast data and the predicted backward trajec-

tories for the warm part of the year (Apr-Sep).

3.1.1 Measurements

Meteorological (temperature, pressure, relative humidity,

direct and diffusive solar radiation, wind speed and wind

gust) and air quality (O3, NO2, NOx, SO2 and PM10)

measurements from Aug 2011 to Sep 2015 were used. In

some occasions due to missing or less accurate results,

measurements from another representative nearby station

were used. Measurements were collected with the time

resolution of 30 minutes, where in the case of pollutant

concentrations the aggregated 1h values were calculated.

Furthermore, only previous day’s values at 12:00, 15:00,

18:00 and 21:00 LT, daily maximum, minimum and aver-

age value between 9:00 and 19:00 LT, as well as today’s

early morning values (at 07:00 LT) were included. Pre-

cipitation was included as the daily cumulative between

7:00 LT of the previous day and today 7:00 LT hour.

3.1.2 Weather forecast

Forecasts from The European Centre for Medium-Range

Weather Forecasts meteorological model were used. 24 h

predictions at 12:00UTC of the forecast day for temper-

ature, dew point temperature, wind speed, geopotential

height, relative humidity and vertical velocity at differ-

ent vertical levels (1000, 925, 850, 500, 300 hPa) were

taken into account. We included predictions of ground

and upper level conditions: precipitation, cloudiness, so-

lar radiation, convection, and showalter index, tempera-

ture triggering convection, the height of zero isotherm,

relative topography, dew point depression, and indicators

of inversion depth rate. The locations of points with pre-

dictions were not necessarily exactly the locations of the

monitoring sites, but were selected among the synop sta-

tions with archived time series of predictions. In addition,

sinusoidal day of the year was also included.
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Figure 1: Locations of European sites in our data (circles), with

emphasis on the three sites included in the results (triangles).

3.1.3 Air mass trajectories

24 h backward trajectories approaching at 15:00 UTC

of the forecast day were calculated at Slovenian Envi-

ronment Agency on ALADIN/SI [16] wind field predic-

tions. For Krvavec station 850 hPa winds were used,

while other trajectories were calculated on the 925 hPa

vertical level. Trajectory end points were located directly

above the station for Koper, Nova Gorica, Otlica, Kr-

vavec, and Iskrba. For the rest of the stations trajecto-

ries calculated for Krvavec were used. Trajectories were

saved as pairs of geographical latitudes and longitudes

(every 3 hours) that approximate 1 day of air mass travel.

3.2 European sites

We compiled ozone concentration measurements data for

121 European sites (see Figure 1). The data run from

2011 to 2013, Apr to Sep. As with the first data set,

the goal is to predict maximum concentrations today at a

particular site, but using only yesterday’s concentrations

from all sites, including the site we are forecasting for.

4 Results

Figure 2 shows the results for the Slovenian sites. Note

that out of the many possible combinations of model and

preprocessing steps we selected only a few. First, each

model type was run with single imputation and xyz trajec-

tory transformation. The RF model, which was the best

performing model on all sites, was then run with different

preprocessing or different handling of missing values to

explore how these changes affect performance.

Figure 3 shows the results for three European sites:

Iskrba, Krvavec (both SLO) and Montfranc (FRA). Ozone

was forecast only with pollutant concentrations (includ-

ing ozone) from other European monitoring sites (EMEP).
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Figure 2: Estimated forecasting accuracy for 8 Slovenian sites.
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(a) Iskrba
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(b) Krvavec
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(c) Montfranc

Figure 3: Estimated forecasting accuracy for 3 European sites.

Results for these three sites are representative of the re-

sults for the remaining sites.

5 Discussion and conclusion

Random forests improve on linear methods on most, but

not all sites. However, the differences are relatively small

and linear methods are, in practical terms, equally accu-

rate. Overfitting was an issue, even with linear methods,

because the number of input variables is in the same order

of magnitude as the number of days.

Trajectories improve results when raw coordinates

are used, but not if the clustering-based approach is used.

More complex handling of missing values does not pro-

vide further improvement, possibly due to a small learn-

ing set which does not support more complex models

for missing values. Somewhat surprisingly, and despite

our relatively simple approach of using only yesterday’s

concentrations to predict today’s concentrations, there

is substantial predictive power in other sites’ concentra-

tions. Note that we’ve limited ourselves to using only

previous day’s data (in order to get results comparable

to forecasting systems currently in production), however,

the approach can easily be extended to using data from

an arbitrary number of previous days’.

Our final goal is to simplify the process of developing

and deploying a model for forecasting air pollutant con-

centrations for the non-(data analysis)expert. Two key

features are delegated to future work. First, being able

to fit all (hyper)parameter in a robust way, for example,

using internal cross-validation. And second, being able

to put less emphasis on older data points, with a moving

window or a more elaborate decay/smoothing approach.
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