
ERK'2016, Portorož, B:55-58 55

Distributed ray tracing for rendering
voxelized LIDAR geospatial data

Miha Lunar, Ciril Bohak, Matija Marolt
University of Ljubljana

Faculty of Computer and Information Science
E-mail: mlunar@gmail.com, {ciril.bohak, matija.marolt}@fri.uni-lj.si

Abstract
In this paper, we present a distributed ray tracing sys-
tem for rendering voxelized LIDAR geospatial data. The
system takes LIDAR or other voxel data of a broad re-
gion as an input from a remote dataset, prepares the data
for faster access by caching it in a local database, and
serves the data through a voxel server to the rendering
client, which can use multiple nodes for faster distributed
rendering of the final image. In the work, we evaluate
the system according to different parameter values, we
present the computing time distribution between different
parts of the system and present the system output results.
We also present possible future extensions and improve-
ments.

1 Introduction
People often desire a different view of the world, either
for scientific or business needs or from just plain curios-
ity. In reality, viewing a location from vastly different
vantage points can take a lot of effort, money and/or time.
With aerial photography, and more recently laser scan-
ning technology, being increasingly utilized across vast
terrain or even entire countries, computer based render-
ing techniques are often employed to provide a relatively
quick and cheap survey or visual representation of col-
lected geospatial data.

Rendering of volumetric voxel1 data is a problem with
many existing solutions, including isosurface extraction
through marching cubes [4], splatting [6] and voxel ray
casting. Ray tracing, an extension of ray casting, is a
rendering technique with extensive prior work on vari-
ous methods and techniques [5]. Such visualization tech-
niques are not available in commonly used GIS software
(e.g. ESRI, Google Maps etc.).

Geospatial science is a wide field of research and ge-
ographic information systems are often used in environ-
mental agencies, businesses, and other entities. Countries
are increasingly funding and openly releasing orthophoto
imagery and laser scans of their terrain, making way for
novel uses of their data.

Our goal is to use such data for non-real-time render-
ing of the landscape in Minecraft-like visualizations.

1A voxel in a voxel grid is the three-dimensional equivalent to a
pixel in a 2D image.

2 System Architecture
The presented system is divided into two stages: prepara-
tion and rendering. An overview of the system architec-
ture is shown in Figure 1.

We use two data sources to prepare our operating data
set: LIDAR2 squares, which are point clouds obtained
from airborne laser scanning divided into 1 km2 squares
on a 2D horizontal grid spanning across the country and
aerial orthophoto images. In the first preparation stage
we download and process LIDAR squares and orthophoto
images using the “Resource Grabber” script written for
the Node.js3 platform. The script reads a local database
called Fishnet, which contains the definitions of all LI-
DAR squares and downloads the ones defined in precon-
figured ranges from ARSO4 servers. After downloading
the original zLAS5 formatted LIDAR squares, we con-
vert them into the open LAZ6 format for easier process-
ing. The script is based on asynchronous queues and can
download and convert multiple resources at once.

In the rendering second stage, we use the ray tracer
program to interactively render requested scenes. The ray
tracer requires world data in a specific voxel format. We
developed an HTTP voxel server to convert and cache
prepared GIS data7 to boxes of voxels, which are then
sent to the ray tracer on demand.

Preparation

LIDAR Data Orthophoto

Resource Grabber

Configuration

Fishnet Database

Prepared GIS Data

Rendering

Ray Tracer

Voxel Server

Figure 1: System architecture diagram.

2Light Detection And Ranging.
3Node.js by the Node.js Foundation: https://nodejs.org/
4Slovenian Environment Agency.
5ESRI proprietary compressed LIDAR file format.
6Open compressed LIDAR file format.
7Geographic Information System data.



56

3 Ray Tracer
In our system, we use standard ray tracing techniques as
described in [5], specifically shadow rays, reflection and
refraction rays, ambient occlusion rays and aerial per-
spective. We developed the ray tracer specifically for
walking through voxel fields. The first step in voxel traver-
sal is quantization, where the initial point of the ray is
converted into coordinates in the voxel grid. The algo-
rithm presented in [1] then shows a way to step through
voxels that the ray touches without missing corner cases
or visiting the same voxel multiple times. In Section 3.1
we show how the main program splits up the desired im-
age into pieces and sends them to available processors,
then in Section 3.2 we show how a single processor loads
and caches voxel worlds for ray tracing.

3.1 Rendering Architecture
In Figure 2 we provide an overview of how the renderer
selects which pixels to render and where. We also give a
brief overview of what every part of this system does and
why it is useful.

Renderer Multiresolution System Scaled Image

Tile SystemTileDistributed Processing

Green Worker Socket

Figure 2: Ray tracer rendering overview.

We developed a multiresolution rendering system with
lower resolution images being rendered first, which is
useful for faster preview. The renderer then renders an
image at double resolution until the requested target res-
olution is achieved. Since the difference is always a factor
of 2, the results of a lower resolution render can be reused
for a higher resolution render, with only the remaining 3
pixels rendered as depicted in Figure 3.

Each scaled image is then split up into tiles of a pre-
determined size. This is good for cache locality because
rays close together in space will be traced close together
in time. We implement two tile orderings, a spiral one
and a vertical one. The spiral ordering is better for inter-
activity, as it first renders the center of the image, which
is usually the most useful while configuring parameters.
The vertical tile order is better for cache locality with a
mostly horizontal world. Splitting up the image into tiles
additionally helps with the next step of dividing up the
work among several possible processors.

Figure 3: Four resolution levels are shown as four shades
of gray on a final 16 × 16 image. Higher resolutions are
represented with brighter pixels.

ZIP File Directory Voxel Server

AnvilRegionRaw Generated
Worker

Socket

HTTP R
em

ot
e

Box Cache

Hash Table Local Box Block Manager

Interface

Figure 4: Ray tracer world loading and caching.

We send each tile to one of the available ray proces-
sors based on ray tracer settings. We implement three
types. A green ray processor is implemented through the
use of green threading, that is, the rays are processed for a
certain chunk of time on the main thread before allowing
for other processing to continue. Since this restricts the
rendering to a single thread, we also implement worker
and socket processors.

A socket processor operates over TCP sockets and
can run either as a separate program on the same com-
puter, a different computer on the same network or even
over the Internet. For worker and socket processors we
also package and send the required state over the worker
channel or network connection on demand.

3.2 World Loading and Caching Architecture
To trace a voxel grid we first need to load a dataset that
contains the voxels we wish to trace. We present an over-
view of the world loading architecture in Figure 4.

We implement loading of three different world for-
mats from the Minecraft video game, as that is a readily
available source of large amounts of voxel data. These
formats (Raw, Region, Anvil) can also be converted into a
custom box format, similar to the ones used in Minecraft.

For rendering in limited environments without exter-
nal data sources, we implement a generated world type
based on Simplex noise [3]. We also implement an HTTP
voxel server which can convert LIDAR point clouds to a
grid of voxels and serialize them into the mentioned cus-
tom box format, described in more detail in Section 4.

All of the formats share the same basic idea – that
the world is split up into chunks or vertical slabs of voxel
data in a horizontal 2D grid. This allows for out-of-core
processing of the world, as chunks can be loaded in and
out of memory on demand.

Loaded boxes are kept in a spatial hash table, using
the Morton code [2] of their coordinates as the hash value
for better hash locality. We developed the Block Man-
ager to abstract all the world loading, caching and voxel
access.

Using the domain knowledge of the flat horizontal 2D
chunk grid mostly filled with smooth terrain, we apply
some specific accelerations to speed up tracing. If a ray
is above or below the extents of the chunk grid, we first



57

advance the ray in its direction to the world data bound-
ary. More granularly, we also advance the ray towards
the bounding volume defined by the precomputed high-
est non-air voxel and the chunk walls.

4 Voxel Server
For the purposes of converting large amounts of LIDAR
points into voxel data we developed a custom multithread-
ed HTTP server based on the CivetWeb8 web server li-
brary.

Based on the position and size requested from the ray
tracer, the server uses appropriate LIDAR squares to gen-
erate a chunk of voxel data in the form of a box, which it
then sends back to the ray tracer.

In the next sections, we describe a series of steps we
used to convert points from the original point cloud for-
mat to a cleaned up voxel representation.

4.1 Box Cache
In the case of distributed ray tracing, many clients can re-
quest the same boxes, so we implemented a box cache. It
is similar to the ray tracer box cache, where the request is
first checked against a spatial hash table and if available,
the saved box is reused, otherwise, a new one is generated
and stored in the cache. This greatly improves the server
throughput in cases of simultaneous same box requests.

4.2 Point Loading
In the first step of building a box, we load the requested
range of points from one or more neighboring LIDAR
squares. We use an area-of-interest rectangle query pro-
vided by the LASlib9 library to decompress and load the
needed points into memory. Since we often need access
to the same LIDAR squares from multiple threads, we use
a pool of point readers to allow for simultaneous reading.

4.3 Quantization
The list of loaded points resides in the ETRS8910 coor-
dinate system, so we transform it into the box coordinate
system and quantize the coordinates to integer values that
a voxel can take. We store the classification of the loaded
point into its place in the voxel grid.

4.4 Acceleration Structure Initialization
We prepare two acceleration structures for easier and faster
nearest point and column height queries later on. We use
the nanoflann11 library to build a k-d tree of all the loaded
points and separately of all the ground points, which en-
ables fast nearest neighbor queries used in the next steps.
We also compute the highest non-air voxel and the high-
est voxel classified as ground for all the vertical columns
in the box and the box as a whole.

8CivetWeb by The CivetWeb developers: https://github.
com/civetweb/civetweb

9LASlib (with LASzip) is a C++ API for reading / writing LI-
DAR by rapidlasso GmbH: https://github.com/LAStools/
LAStools/tree/master/LASlib.

10European Terrestrial Reference System 1989.
11nanoflann by M. Muja, D. G. Lowe and J. L. Blanco: https:

//github.com/jlblancoc/nanoflann

4.5 Building Fill
Buildings are represented in the source LIDAR data as
mostly just roofs without any walls. We make the as-
sumption that walls of buildings are mostly vertically flat,
so we convert the classification of all the voxels under-
neath roofs to the “building” type down to the lowest
voxel height in the box.

4.6 Ground Fill
LIDAR points don’t cover the ground evenly due to laser
scanning imperfections, additionally, they are defined only
on the surface. For every computed ground column larger
than 0 we assume that it has a defined height. For zero
height ground columns, we approximate the nearest height
from neighboring ground points. All the voxels under-
neath the ground column height are set to the classifi-
cation of ground, filling all the holes and empty voxels
underground.

4.7 Specialization
The original LIDAR point classification types are lim-
ited, but fairly reliable. For a more realistic rendering,
we specialize the topmost box voxels through the use of
orthophoto imagery. We transform the voxel coordinates
into ETRS89 to look up corresponding orthophoto pixel
color values. We set up a color classification map and
filled it with hand-picked color values from a selected or-
thophoto places and the classifications they represent. We
map each looked up color value to a classification by sim-
ply finding the shortest Euclidean distance to the color in
color map in RGB color space.

4.8 Water Equalization and Deepening
Water is only classified in the specialization step, so it can
be very noisy and unrealistic in places, especially near
river banks and shores. We assume a single water level
in a box, which we get from the median height of all the
water blocks in the box. All the water blocks are then
set to this equalized water level. Due to the nature of
specialization, water is defined only on the surface. We
artificially deepen it based on distance from shore.

5 Parameter Analysis and Results
We tested the system on an Intel Core i7 5820K 6-core
processor running at 3.4GHz, 32GiB of system RAM
running at 2400MHz and a Samsung SSD 850 Pro 512GB
solid state drive. We set the camera to a ≈500m high
bird’s eye view of Ljubljana with a 40◦ field of view. We
used a memory limit of 700MiB per ray tracer and a box
size of 64 × 256 × 64. Viewpoints that are farther away
demand more resources due to the amount of data and
cache locality. The selected view is mid-ranged and the
boxes it contains do not fit inside the 700MiB memory
limit. Figure 5 shows a couple of possible renders using
our system.

5.1 Box Size
We tested several different box sizes and recorded their
rendering time.



58

Figure 5: Bled Island rendered using our system.

24 25 26 27 28

50

100

150

Box Size [x× 256× x]

R
en

de
rT

im
e
[s
]

Interactive

Optimal

Figure 6: Rendering time versus box size, the most opti-
mal box size was 64 × 256 × 64. Interactive means spi-
ral tile order and several resolution levels, optimal means
vertical tile order and the final resolution only.

5.2 Tile Size
We also tested a range of different tile sizes with a hot
and cold box cache. The optimal tile size in terms of
processing speed was 50% of image height, however, for
best interactivity, the best compromise was ≈ 15% of
image height or ≈ 100px.

7.2 72 144 288 432 576 720

20
40
60
80

100
1 510 20 30 40 50 60 70 80 90 100 %

px

Tile Size [% of Image Height, x× x ]

R
en

de
rT

im
e
[s
]

Cold Cache Hot Cache

Figure 7: Render time of a 1280×720 image as a function
of tile size in pixels and percent of image height.

5.3 Processor Type and Cache
We tested the differently implemented processor types.
Before each test, we cleared the box cache and then ren-
dered the same scene 10 times, recording the render time
after each run. This tests cache efficiency over time and
runs. The results are displayed in Figure 8.

5.4 Voxel Server Step Timing
We recorded the execution time of each step in the voxel
server in a period of about half a minute. At the start, the
server had an empty cache so as to avoid only recording
execution time of the cache and network activity. Since
the server is multithreaded, there can be multiple seconds

0

10

20

30

300MiB/900MiB 600MiB/1200MiB

0
20
40
60
80

1 3 5 7 9
0

10

20

30

2 4 6 8 1 3 5 7 9 2 4 6 8
0
20
40
60
80

Green 2 workers
1 socket 2 sockets 4 sockets
6 sockets 12 sockets 12 HQ sockets

Figure 8: Rendering time in seconds using different pro-
cessor types over 10 runs.

of work done every second. Figure 9 shows the average
step execution time for a single box.

0 250ms 0.5 s

Water Deepening
Water Equalization
LASlib Reader Init.

Orthophoto Load
Building Fill
Column Init.
Quantization

Underground Fill
k-d Build for Ground

Transformation
Filter for Gray Roofs

Filter for Orange Roofs
Filter with Null Target

Filter for Flat Roofs
Filter for Asphalt
k-d Build for All

Box Transmission
Iterative Ground Search
Combined Ground Fill

Specialization
Serialization

Filter for Water
Combined Filters
Point Cloud Load

Combined Box Gen.

10 µs
39 µs
48 µs
167 µs
862 µs
882 µs
1ms
2ms
3ms
4ms
5ms
5ms
6ms
6ms
7ms
7ms
10ms
14ms
16ms
19ms
33ms
36ms
66ms

283ms
435ms

Figure 9: Average step execution time in voxel server box
generation.

6 Conclusion and Future Work
We presented a novel system capable of rendering large
amounts of LIDAR data on distributed machines. Our
current implementation is suited for bird’s eye views, as
we require all the boxes on a ray’s path to be loaded si-
multaneously. The voxel server we developed could be
improved in many ways, however, we already get accept-
able results for certain locations through the simple steps
we have shown. Future work would also include a ray
tracer capable of running across a variety of computing
devices (e.g. GPUs) and more cache friendly ray sorting
algorithms, which would speed up the rendering portion
of the system.

Rendering and point cloud data processing are both
very wide fields of research, opening up a path to a multi-
tude of new extensions, methods, improvements, and ad-
ditions.


