
ERK'2016, Portorož, B:83-88 83

FPGA Implementation of a Multiplier in MLRNS

Ratko Pilipovic1, Zdenka Babic2, Patricio Bulic3
1,2University of Banja Luka, Faculty of Electrical Engineering Banja Luka, Bosnia and Hercegovina

3University of Ljubljana, Faculty of Computer and Information Science Ljubljana, Slovenia
E-mail: 1ratko.pilipovic@etfbl.net, 2zdenka@etfbl.net, 3patricio.bulic@fri.uni-lj.si

Abstract
Multiplication is one of the four elementary, mathemat-
ical operations on which are based many DSP applica-
tions. Since the multiplication dominates in many DSP
operation, there is high demand for high speed multiplier.
In this paper we try to implement multiplier in Residue
Number System with multiple levels (Multi-Level Residue
Number System - MLRNS) using FPGA. Since the mod-
uli at each level have the simple form, conversions from
weighted number system to MLRNS and vice-versa are
simple and fast. Each high-to-low level conversion in
MLRNS decreases dynamic ranges of operands and in-
creases the level of parallelism. In other words, we can
observe multiplication of large numbers as multiple par-
allel multiplications of smaller numbers in MLRNS.

Keywords — Residue number system (RNS), moduli sets,
FPGA, parallelism, weighted-to-RNS conversion, large
numbers, digital signal processing.

1 Introduction
Residue arithmetic is an ancient branch of mathematics,
dated to the 3rd Century A.D. [1]. Addition and mul-
tiplication in Residue number systems (RNS) are carry-
free operations and can be performed in parallel. A few
decades ago, since these great advantages, RNS were in-
vestigated for use in the design of general purpose com-
puters [2], and specialized RNS processors [3]. But, be-
ing a non-weighted number system, RNS suffers from
complicated division and magnitude comparison. More-
over, conversion from weighted number system to RNS
with arbitrary set of moduli and vice-versa is cumber-
some.

Although these shortcomings prohibit its widespread
use in general-purpose computer systems, because of the
ability to perform high-speed concurrent arithmetic, the
RNS has been proposed as a means to efficiently perform
computations in digital signal processing (DSP) and other
applications which require only multiplication and addi-
tion [4, 5, 6, 7]. Nowadays, RNS is becoming more and
more popular for image processing in embedded systems,
which have limited processing power that is constrained
by power consumption [8, 9].

An RNS moduli base is a set S = {m1,m2, ..,mN}
composed of positive coprime integers. We say that ml,

mk are coprime when their only common divisor is one.
An unique RNS representation for every integer X be-
longing to the dynamic range [0,M − 1] defined by the
product of all moduli M =

∏n
i=1 mi, is given by RNS

digits Xi, i = 1, 2, ..., N :

X = (〈X〉m1
, 〈X〉m2

, ..., 〈X〉mN
) (1)

where 〈X〉mk
denotes arithmetic moduo of X by mk

According to the Chinese Remaining Theorem (CRT)
[1], conversion of RNS number representation to binary
number system is given by:

X =

〈
N∑
i=1

〈
Xi

〈
m̂i
−1〉

mi
m̂i

〉
mi

〉
M

(2)

where m̂i = M
mi

, i = 1, 2, .., N and m̂i
−1 denotes the

multiplicative inverse of m̂i modulo mi.
Residue number systems with a lot of moduli are more

efficient, because more moduli means smaller resulting
dynamic range and greater level of parallelism. But, be-
cause of the constraint that moduli must be positive co-
prime integers, construction of moduli base is not a sim-
ple task. Because of simple conversion to and from RNS
and arithmetic units, the triple moduli set {2n − 1, 2n,
2n + 1} have unprecedented importance in RNS. Main
advantage of this set is simple and straight forward con-
version, but main disadvantage lies in limited dymanic
range. If large dynamic ranges are desirable, we must
consider a RNS with more than three moduli set. Pa-
per [10] presents a comparative study on different moduli
set in RNS. We can divide all moduli sets in four groups,
moduli sets with 3n, 4n, 5n and 6n dynamic range. Mod-
uli sets with 3n dynamic ranges can be divided into two
groups, ones that uses 2n + 1 channel and others that
don’t. Although RNS without 2n + 1 channel perform
faster, the reverse converters are more complicated com-
pared to RNS with 2n + 1 channel. For a faster multi-
plication and increase of dynamic range, RNS with four
moduli set is introduced. The main disadvantages of this
moduli set is complicated reverse conversion and usage of
moduli is dependent with value of n. RNS with moduli
with 5n dynamic range is used to improve residue arith-
metic, but it also suffers from complicated reverse con-
version. To improve reverse conversion, moduli set with



84

6n dynamic range. As concerned residue arithmetic, they
show acceptable delay.

This paper presents challenges of FPGA implemen-
tation of multiplier in Multi-Level Residue Number Sys-
tem (MLRNS). MLRNS uses the multiple binary-to-RNS
conversions with several moduli sets in the same form
{2n − 1, 2n, 2n + 1}, presented in [11]. This set is used
to overcome limited range of three-moduli and at the same
time to overcome complexity of RNS-to-Binary and Bina-
ry-to-RNS conversion of four-, five- and six- moduli set.

2 Multi-level residue number system
Let 〈Xi · Yi〉mi

denotes modulo mi multiplication in RNS,
where Xi and Yi represents RNS operands. For these op-
erations, if dynamic ranges of inner RNS operands are
known, it is possible to calculate dynamic range of in-
ner RNS results before modulo mi residue reduction, e.g.
dynamic range of · operation results. Dynamic range of
inner RNS operands is [0,mi − 1]. In three moduli RNS
with S = {2n − 1, 2n, 2n + 1} dynamic ranges of in-
ner RNS operands are [0, 2n − 2], [0, 2n − 1], [0, 2n] per
moduli respectively. For that case, maximally dynamic
ranges of inner RNS results, before modulo mi residue
reduction, is [0, 22n].

Let’s define a RNS subsystem, RNS(1), with moduli
set S(1) = {2n(1) − 1, 2n

(1)

, 2n
(1)

+ 1}. New moduli
should be as small as possible, and it must not interfere
with inner operand product. To achieve second goal, new
moduli must respect constraint:

M (1) = (2n
(1)

− 1)(2n
(1)

)(2n
(1)

+ 1) > 22n (3)

Following Eq. 4 we can make relation between n(1) and
n:

n(1) =

⌊
2n

3

⌋
+ 1 (4)

The moduli from the set S(1) are smaller than the
moduli from the set S. This procedure can be repeated,
defining the RNS(2) as the subsystem of RNS(1), and
so on, until we reach moduli of desired size. These mul-
tiple RNS(k) − to−RNS(k+1), conversions lead to the
Multi-Level Residue Number System (MLRNS). Because
of the moduli set in each RNS subsystems are in the form
{2n − 1, 2n, 2n + 1}, these RNS(k) − to − RNS(k+1)

and vice versa conversions are as simple as binary-to-
RNS and RNS-to-binary conversions. By each such con-
version, dynamic range of inner operands in RNS subsys-
tems is decreased and level of parallelism is increased.
For example, in MLRNS system with K levels, multipli-
cation of X and Y can be done with 3K multiplication,
that can be executed in parallel, where operands have
lower dynamic range than X and Y .

3 Proposed architecture
In this section we will go trough the architecture of ML-
RNS based multiplier. Proposed architecture is based on
discussion presented in Section 2 with minor changes that

were done in order to make it more suitable for FPGA.
We designed three level MLRNS based multiplication,
which is consisted of several moduli sets in the same form
{2n − 1, 2n, 2n + 1}. In three level MLRNS with mod-
uli set in the form {2n − 1, 2n, 2n + 1}, multiplication
is replaced with 33 = 27 fully parallel multiplications.
MLRNS based multiplication can be done with multi-
ple multiplications performed in parallel where operands
have lower dynamic ranges than initial operands before
MLRNS conversion. Having this in mind we can say that
MLRNS based multiplication is suitable for implement-
ing on FPGA, which is popular platform for parallel pro-
cessing. Figure 1. illustrates multiplication in MLRNS
system. X and Y represents input operands and Z repre-
sent output. First step in MLRNS based multiplication is
Binary-to-MLRNS conversion of input operand. Result
of Binary-to-MLRNS conversion are vectors (X1, X2, ...
, X27), (Y1, Y2, ..., Y27) which are MLRNS representa-
tion of numbers X and Y , respectively. Multiplier con-
ducts, in our case, 27 parallel multiplication, where opera-
nds have lower dynamic range than X and Y . Output of
multiplier is vector (Z1, Z2, ..., Z27) where Zi = Xi ·
Yi. Resulting vector (Z1, Z2, ..., Z27) is MLRNS rep-
resentation of product Z = X · Y , so as final step we
need to apply MLRNS-to-Binary conversion on vector
(Z1, Z2, ..., Z27) to get product of X and Y .

3.1 Binary-to-MLRNS conversion
Figure 2. a) illustrates Binary-to-MLRNS conversion,
where n(i) determines {2n(i) − 1, 2n

(i)

, 2n
(i)

+ 1}, mod-
ule set in i-th layer. To achieve that Binary-to-MLRNS
doesn’t have influence on multiplication, each MLRNS
layer must respect condition given by Eq. 4. Architecture
of Binary-to-MLRNS conversion is pretty simple, each
output from one level of MLRNS conversion represents
input for next level of MLRNS conversion. One level of
MLRNS conversion, represents one or more Binary-to-
RNS conversion that can be process in parallel, so the
problem of implementing Binary-to-MLRNS conversion
is reduced to problem implementing Binary-to-RNS con-
version on FPGA. Let’s write binary integer in the form:

X = A+B2n + C22n (5)

With such notation, three moduli RNS representation of
number X is given by:

XRNS = (X1, X2, X3) = (〈X〉2n−1 , 〈X〉2n , 〈X〉2n+1)
(6)

where X1 = 〈A+B + C〉2n−1 , X2 = A and
X3 = 〈A−B + C〉2n−1 Problem of determining A,B
and C can be done very easily in VHDL, taking first, sec-
ond and third n(i)-bit parts of input operand X.

Let’s observe (i + 1)-th level of Binary-to-MLRNS
conversion, with the appropriate RNS representation
(〈Xl〉2n(i+1)−1, 〈Xl〉2n(i+1) , 〈Xl〉2n(i+1)

+1
) of a number

Xl which represents output from i-th level. Using 2n
(i+1)

basis on (i + 1)-th level we can represent number Xl as
Xl = A + B2n

(i+1)

+ C22n
(i+1)

. Based on Eq. 4, we
can conclude that 22n

(i+1)

> 2n
(i)

, and also, according



85

Figure 1: MLRNS based multiplier

to Section 2., we can say that maximal value for Xl is
2n

(i)

. Having these two observation in mind, we can say
that C is equal to 0 in Eq. 6 for every level of Binary-
to-MLRNS conversion. Due to previous discussion, in
order to implement Binary-to-RNS conversion, we only
need to design block that calculates 〈A+B〉

2n
(i)−1 and

〈A−B〉
2n

(i)+1 .

〈A+B〉
2n

(i)−1 =

{
〈(A+B − 1)〉

2n
(i) if (A+B) ≥ 2n

(i)

(A+B), otherwise
(7)

Implentation of Eq. 7 consists of adder, compara-
tor and incrementer. Although this implementation is
pretty simple, the main problem is conditional branching,
which can cause very big delay. To overcome this prob-
lem we use Kogge-Stone parrallel prefix adder structure
[12]. Parallel prefix adder is type of adder where carry
bits are generated using parallel-prefix carry-computation
unit. To use parallel-prefix adder as modulo adder we
connect output carry bit with its input carry bit. Result-
ing structure is more known as EAC (End Around Carry)
parallel prefix adder. Only disadvantage of this approach
is double representation of zero, so we always have in
mind that 2n

(i)−1, is equal to 0.
Following Eq. 5 finding residue of X by module

2n
(i)

+ 1 can be expressed as 〈A−B〉
2n

(i)
+1

. This ex-
pression can be written as follows:

〈A+B〉
2n

(i)
+1

=

{
(A+B − 1)− 2n

(i)

if (A+B − 1) > 2n
(i)

(A+B − 1), otherwise
(8)

Looking at Eq.8 we can see that for residue generation
we need to implent addition and subtraction with con-
ditional branching. This method is time consuming and
it’s inefficient when A and B have great dynamic ranges.
To overcome these disadvantages we use residue gener-
ators described in [13]. Proposed generator consist of
full adders and Augmented Diminished-1 adder. In the
diminished-1 representation, X is represented by xzX

∗

where xz is single bit, known as zero indication bit and
X∗ is n(i)-bit vector known as number part. If X >
0 the X∗ = A − 1 and az = 0, whereas if X = 0
then X∗ = 0 and xz = 1. Working with diminished-
1 notation eases and simplifies finding residue by mod-

ule 2n
(i)

+ 1, than normal weighted representation. At
first level of residue generation we translate the A and B
into theirs diminished-1 forms A∗ and B∗. Diminished-
1 form A∗ and B∗ serve as input operand for augmented
Diminished-1 adder which consist of parallel prefix IEAC
(Inverted End Around Carry) adder and AND logical cir-
cuit with multiple inputs. Logical AND circuit detects
when the residue is equal to 2n(i), while in other cases
the output is equal to 0. Resulting residue is made by
concatenation between output of AND logical circuit and
the output of of parallel prefix IEAC adder.

Proposed implementation of Binary-to-MLRNS con-
sist of combinatorial logic, and doesn’t need external syn-
chronization. For this approach we used structural de-
sign, where building blocks represent Binary-to-RNS con-
version. In this conversion we achieve local and global
parallelism. Local parallelism consist of parallel residue
generation by moduli set {2n − 1, 2n, 2n + 1} inside RNS-
to-Binary conversion. Global parallelism is achieved by
parallel execution of Binary-to-RNS conversion inside one
layer, e.g. in our case we can achieve 9 parallel Binary-
to-RNS conversion at third level of MLRNS.

3.2 MLRNS-to-Binary conversion
Figure 2 b) illustrates MLRNS-to-Binary conversion,
where n(i) determines {2n(i) − 1, 2n

(i)

, 2n
(i)

+ 1} mod-
ule set, in i-th layer. Function of this block is transfor-
mation of vector (Z1, Z2, ..., Z27) into its appropriate bi-
nary representation Z. As we stated before we designed
three level MLRNS based multiplication, so our conver-
sion block consist of three step RNS-to-Binary conver-
sion. Architecture of MLRNS-to-Binary conversion is
pretty similar to architecture of Binary-to-MLRNS con-
version although they have inverse functions. Outputs
from i-th layer represents RNS representation for mod-
uli set {2n(i+1) − 1, 2n

(i+1)

, 2n
(i+1)

+ 1} in (i+ 1) layer.
Based on described architecture, we only need to imple-
ment block that converts RNS-to-Binary which is main
building block of proposed MLRNS-to-Binary conver-
sion block.

Let’s examine dynamic range of output numbers in
(i+1)-th layer. These numbers belong to dynamic range
[0,M (i) − 1] where M (i) = 2n

(i)

(2n
(i)

+ 1)(2n
(i) − 1),



86

Figure 2: Block sheme: a) Bin-to-MLRNS conversion b) MLRNS-to-bin conversion c) Modified RNS-to-Binary conversion

which is approximately equal to 23n
(i)

. Analyzing dy-
namic range of output number from (i + 1)-th layer and
having in mind Eq. 4, we can conclude that output of
(i + 1)-th layer has greater dynamic range than input of
i-th layer. Because of this it’s necessary to find residue
by moduo

{
2n

(i) − 1, 2n
(i)

, 2n
(i)

+ 1
}

, before applying
RNS-to-Binary conversion. Modification of RNS-to-Bi-
nary is illustrated on Figure 2 c).

The traditional implementation of RNS-to-Binary con-
version is based on inverse CRT (Chinese Remainder The-
orem conversion based on Eq. 2 and multiplicative in-
verses that can be expresed as m̂1 = 2n(2n+1) m̂1

−1 =
2n−1, m̂2 = 22n − 1 m̂2

−1 = 2n − 1 and m̂3 =
2n(2n − 1) m̂3

−1 = 2n−1 + 1. Analyzing Eq. 2 and
the forms of multiplicative inverses, for implementing in-
verse CRT we need to perform multiple modulo addi-
tions, modulo subtractions, and bit shifting. This kind
of implementation requires many operators with long la-
tencies and heavy resource cost. To avoid these problems
we implemented RNS-to-Binary conversion described in
[14]. In [14] is presented highly efficient and general pur-
pose RNS-to-Binary converter which is implemented us-

ing bitwise arithmetic. General idea of this work is based
on following properties:

〈−v〉2n−1 = vn−1vn−2...v1v0 (9)

〈2pv〉2n−1 = vn−p−1vn−p−2...v1v0vn−1vn−2...vn−p
(10)

〈2pv〉2n−1 = vn−p−1vn−p−2...v1v0vn−1vn−2...vn−p
(11)〈

2n+1v
〉
2n−1 = vn−1vn−2...v1v0vn−1vn−2...v1v0

(12)
where v represents number with its binary representation
vn−p−1vn−p−2...v1v0. Based on properties expressed by
Eq. 9. - 12., X can be calculated from its RNS represan-
tation (X1, X2, X3) as follows:

X = 〈v1 + v21 + v22 + v3〉22n−1 +X2 (13)

where v1, v21, v22, and v3 are calculated as follow:

v1 = 〈−2nX2〉22n−1 (14)

v21 =
〈
2n−1X1

〉
22n−1 (15)

v22 =
〈
−22n−1X1

〉
22n−1 (16)



87

v3 =
〈
2n−1(2n + 1)X1

〉
22n−1 (17)

Having in mind equations expressed by Eq.13 - 17, RNS-
to-Binary conversion can be design with 2 complement
operation, 4-left shift operations and 1 concatenation op-
eration.

Proposed architecture is entirely based on combina-
torial logic, and doesn’t need external synchronization.
For this approach we used structural design, where build-
ing blocks represent RNS-to-binary conversion. These
blocks are depicted in Figure 2 c), and are connected as
depicted in Figure 2 b). Like in Binary-to-MLRNS, we
achieve a great level of parallelism using simultaneous
RNS-to-Binary conversion inside one layer.

4 Experimental results
In this section we will first shortly describe used test pro-
totype and then will briefly explain its building parts. In
order to evaluate our implementation we will investigate
hardware utilization and delay. It is of great importance
to evaluate hardware utilization in order to observe over-
all scalability of proposed approach. On the other hand
goal of MLRNS approach is speeding up the arithmetic
operations, so it’s of the crucial importance to observe the
delay.

Our test prototype is the Digilent Atlys Spartan-6 Tra-
iner board equipped with Spartan 6 XC6SLX45 FPGA
chip. This board contains 128 MB DDR2 and 16 MB
ROM. Spartan 6 XC6SLX45 FPGA chip contains 43,661
Logic, 6,822 CLB (Complex Logic Blocks) slices, 54,576
FF’s, 18 Kb RAM, and with 58 DSP slices. LUT repre-
sents a flexible resource capable of implementing logic
functions to six inputs, small ROM, small RAM and shift
registers. Unlike LUTs which function can be progra-
mmed by user, DSP slices are specially designed for fast
multiplication and addition. These unit can compute func-
tions that are in form P = (A+D)∗B, P = P ′+C and
many similar functions. It is also capable of SIMD pro-
cessing, implementing 2 or 4 shorter addition/subtraction/
accumulation operations of 24 or 12 bits, respectively.

Table 1: Analysis of resource usage and delay of MLRNS based
multiplier

n Resource usage Delay[ns]
LUTs DSP slices Logic Propagation

32 4264 9 37.399 143.112
64 8708 27 50.631 187.084

128 28074 32 62.233 243.441

Table 1. shows hardware resource utilization and de-
lay of MLRNS multiplier in dependence of dynamic range
of product X · Y . Both input operands X and Y are rep-
resented with n bits. For hardware resources we analyzed
number of used LUTs and DSP slices. LUTs are used for
building combinatorial logic for implementing MLRNS
forward and reverse conversion. In this work we tried to
emphasize on MLRNS so we used DSP slices for mul-

tiplication of appropriate MLRNS representation X and
Y .

Looking at the hardware utilization of MLRNS mul-
tiplier we conclude that system is very demanding. Ef-
ficiency of hardware utilization is decreased due to used
board which was available at the time. The Atlys board is
mainly used for introducing FPGA technologies for stu-
dents. Furthermore we didn’t used any optimization in
order to contribute scalability of our system.

The most interesting part is delay. We differ delay
that is caused by logic and delay that is caused by sig-
nal propagation between building FPGA elemensts in for-
ward and reverse conversion. Analyzing the delay in Ta-
ble 1. we can conclude that about 80% of delay is caused
by signal propagation, while 20% of delay is caused by
used logic. From aspect of maximal speed we succeeded
in creating high speed logic for fast multiplying, although
we have problems with signal propagation. This situation
is natural consequence of FPGA design which consists of
CLBs which are interconnect by connection matrix. Our
design, in general, will be spread on multiple CLBs so
the communications between CLBs causes delay. This is
sign to map our implementation into ASIC structures.

5 Conclusion
In this paper we present a FPGA implementation of mul-
tiplier in Multilevel Residue Number System. Because
of constraint that moduli in the standard RNS must be
positive coprime integers, construction of more efficient
RNS with lot of moduli is not a simple task. RNS with
lot of moduli has larger dynamic range, but suffers from
complex and slow realizations of both to and from RNS
conversions. For MLRNS based multiplier implementa-
tion we use RNS with {2n − 1, 2n, 2n + 1}moduli set as
base for constructing MLRNS. To increase level of paral-
lelism and decrease dynamic range of operands we only
need to add new level to MLRNS. The number of lev-
els in MLRNS and sets of moduli should be designed in
accordance to the dynamic range of product factors.

Based on FPGA, we developed an multiplier based
on Three-Level MLRNS. Although experimental results
show high usage of hardware resources and relative big
delay, proposed approach has great potential to become
efficient solution for design high speed multipliers. This
presumption is based on fact that in MLRNS common
multiplication is done as several multiplication executed
in parallel with operands that have lower dynamic range
than inital product factors. This feature of MLRNS will
be visible when we deal with large numbers multiplica-
tion. This potential is also confirmed by logic delay of
implemented multiplier.

Future improvements would contribute to hardware
scalability and faster multiplication allowing multiplier
to use all key-advantages of MLRNS. In future work we
will explore further optimization of proposed multiplier
and try to map it into ASIC structures.



88

Acknowledgments
This research was supported by Slovenian Research Age-
ncy (ARRS) under Grants P2-0359 (National research
program Pervasive computing), and by Ministry of Civil
Affairs, Bosnia and Herzegovina, under grants BI-BA/16-
17-029 (Bilateral Collaboration Project).

References
[1] J. H. McClellan and C. M. Rader, “Number theory

in digital signal processing,” 1979.

[2] N. S. Szabo and R. I. Tanaka, Residue arith-
metic and its applications to computer technology.
McGraw-Hill, 1967.

[3] V. Paliouras and T. Stouraitis, “Multifunction archi-
tectures for rns processors,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal
Processing, vol. 46, no. 8, pp. 1041–1054, 1999.

[4] E. B. Olsen, “Introduction of the residue number
arithmetic logic unit with brief computational com-
plexity analysis,” arXiv preprint arXiv:1512.00911,
2015.

[5] G. C. Cardarilli, A. Nannarelli, M. Petricca, and
M. Re, “Characterization of rns multiply-add units
for power efficient dsp,” in 2015 IEEE 58th Interna-
tional Midwest Symposium on Circuits and Systems
(MWSCAS), pp. 1–4, IEEE, 2015.

[6] D. R, B. V, S. K. Sahoo, N. R. Samhitha, N. A.
Cherian, and P. M. Jacob, “Implementation of float-
ing point mac using residue number system,” in
Optimization, Reliabilty, and Information Technol-
ogy (ICROIT), 2014 International Conference on,
pp. 461–465, Feb 2014.

[7] C. H. Chang, A. S. Molahosseini, A. A. E. Zarandi,
and T. F. Tay, “Residue number systems: A new
paradigm to datapath optimization for low-power
and high-performance digital signal processing ap-
plications,” IEEE Circuits and Systems Magazine,
vol. 15, pp. 26–44, Fourthquarter 2015.

[8] W. Wang, M. Swamy, and M. O. Ahmad, “Rns ap-
plication for digital image processing,” in System-
on-Chip for Real-Time Applications, 2004. Pro-
ceedings. 4th IEEE International Workshop on,
pp. 77–80, IEEE, 2004.

[9] D. K. Taleshmekaeil and A. Mousavi, “The use of
residue number system for improving the digital im-
age processing,” in IEEE 10th INTERNATIONAL
CONFERENCE ON SIGNAL PROCESSING PRO-
CEEDINGS, pp. 775–780, IEEE, 2010.

[10] D. Younes and P. Steffan, “A comparative study on
different moduli sets in residue number system,” in
Computer Systems and Industrial Informatics (ICC-
SII), 2012 International Conference on, pp. 1–6,
Dec 2012.

[11] Z. Babic, “Recurent rns and its application to digi-
tal signal processing,” in XXXVIII Etran confernce
paper antology, pp. 109–110, ETRAN, June 1994.

[12] H. T. Vergos, C. Efstathiou, and D. Nikolos,
“Diminished-one modulo 2 n+ 1 adder design,”
IEEE Transactions on Computers, vol. 51, no. 12,
pp. 1389–1399, 2002.

[13] H. T. Vergos and D. Bakalis, “On the use of
diminished-1 adders for weighted modulo 2n+ 1
arithmetic components,” in Digital System Design
Architectures, Methods and Tools, 2008. DSD’08.
11th EUROMICRO Conference on, pp. 752–759,
IEEE, 2008.

[14] B. Liu, H. Fu, L. Gan, W. Zhao, and G. Yang,
“Optimizing residue number reverse convert-
ers through bitwise arithmetic on fpgas,” in
Field-Programmable Custom Computing Machines
(FCCM), 2015 IEEE 23rd Annual International
Symposium on, pp. 236–243, IEEE, 2015.


