
ERK'2017, Portorož, 411-414 411

Comparing execution traces of programs
written in different programming languages

Jaka Bac, Boštjan Slivnik1

1Faculty of Computer and Information Science, University of Ljubljana, Slovenia
Email: jaka.bac@gmail.com

Abstract
This is a preliminary study about how, when executed,
programs that are performing the same computation but
are written in different programming languages produce
different execution traces, i.e., streams of executed in-
structions. Until proven otherwise, any such study must
be considered both CPU and compiler/interpreter depen-
dent. The study is so far limited to the x86-64 architec-
ture and to a small set of programming languages, i.e.,
C, Java and Python, that differ significantly in terms of
an execution at the binary level. The comparison was
carried out by analysing the execution traces obtained by
the dynamic binary instrumentation of programs: when
instructions found in execution traces are categorised, a
difference between those three programming languages
are visible from yet another point of view.

1 Introduction
Algorithms were started to be analysed soon after they
have been first conceived and programs once they were
written. Different approaches exist, from source code
symbolic analysis to measuring CPU or wall clock time,
each of them telling one part of the story.

Knuth realised that the language significantly influ-
ences the way programs are written while machine-orien-
ted language . . . is much closer to reality and therefore
uses the assembly language to explain and analyse algo-
rithms [1]. To bring the investigation on how programs
written in different high-level programming languages are
executed closer to reality, the execution traces, i.e., the
sequence of instructions executed by the CPU once the
program is run, must be analysed.

The idea of producing the execution trace of a run-
ning program is not new. But in 1990, for instance, it was
established that the additional code required to record
events greatly slows a program’s execution and that the
resulting trace files can grow unmanageable large [2].
Even in 2005, the execution traces had to be compressed
on-line, an approach than severely complicated any post-
mortem analysis [3]. Nowadays, with significantly in-
creased computer resources, at least some analyses are
becoming feasible and are already being performed by
commercial software. Security researchers use dynamic
instrumentation as an aid to discover flaws in programs.
Reverse-engineers use it to discover data and control flow

of an application. Profiling tools use it to detect memory
access errors and/or measure performance. Furthermore,
some virus scanners perform a ”deep screen” of an un-
known application by running it under its own dynamic
instrumentation engine to detect suspicious behaviour [4].

This paper is organised as follows. Sections 2 and 3
contain a very short introduction to code instrumentation
and recording of execution traces in Intel PIN. In Sec-
tion 4 a simple analysis of instruction categorisation is
introduced while Section 5 presents the report on per-
forming the categorisation on a few simple programs.

2 Code instrumentation using PIN
To produce an execution trace an application must be or-
chestrated with small fragments of trace generating code.
Instrumentations can be done at various stages, each of
them having different strength and limitations.

Static instrumentation can be performed in compile
time or later, but before the program is executed. If per-
formed at compile time, it can use all information about
the program available to the compiler and tends to have
slightly lower overhead than run time instrumentation,
but is usually unable to handle self modifying or runtime-
generated code [5].

Dynamic instrumentation is done in run-time. It tends
to be far more flexible in what can be instrumented. For
instance, machine code generated in run-time by just-
in-time compilation can only be instrumented using dy-
namic instrumentation. However, it may have higher per-
formance overhead [5]. Furthermore, the implementa-
tion of dynamic instrumentation is significantly more de-
manding that implementation of static one.

Fortunately, various free or open-source frameworks
for the dynamic instrumentation are available. Frida is
an interactive executable exploration tool allowing the
user to instrument the executable by injecting javascript
code. Valgrind first transforms the executable into its
own IR (called VEX) upon which transformations and
analyses are performed. It is therefore unsuitable in our
case. DynInst was not explored since DynamoRIO and
PIN seem to be far more widely used. Finally, Intel PIN
has been chosen as it has the most versatile API [6, 7].

At its core Intel PIN is a virtual machine with a JIT
compiler which transforms existing machine code into
equivalent machine code which allows PIN to retain con-



412

trol while the application is being executed. During the
execution, PIN splits application’s code into traces which
are straight lines of application code that either uncon-
ditionally terminate, have a pre-defined number of con-
ditional exit points or contain a pre-defined number of
instructions. PIN rewires the exit points back into its VM
to regain control and to find the next trace of application
code [6].

To facilitate code instrumentation PIN provides a way
to write plugins (called Pintools) which register interest
for certain events and then receive callbacks from the
Pin VM. There are two callbacks meant for implement-
ing custom instrumentation. One occurs each time PIN
visits a new machine instruction of the target application
or when it discovers a new trace of application code. The
trace is conveniently split into basic blocks for the Pintool
which then uses the PIN API to either just inspect the
application code and/or rewrite the application code by
inserting new instructions and/or deleting existing ones.

The Pintools are written in C/C++ and must respect
PIN’s rules in order not to crash the instrumented appli-
cation or cause a deadlock.

3 Recording execution traces using PIN
Our trace generating code is a Pintool which processes
each basic block discovered by PIN VM. It disassembles
its instructions and assigns them a sequential id. Option-
ally, the disassembly may contain the address of each in-
struction. Each basic block is also instrumented with a
call to a tracing function which accepts the id of the basic
block as a parameter in order to retrieve its disassembly
and writes it to a file or a pipe. It is also possible to write
out the instruction in their binary form in order to save
space. The resulting trace can be processed further for
more in-depth analyses. These can be written in any high
level language and are not restricted by the rules for Pin-
tools.

Once the interesting behaviour is isolated a specialised
Pintool can be written in order to minimise the instrumen-
tation overhead. A significant amount of overhead repre-
sents writing the trace to a file. If this can be reduced by
performing more analysis during the program execution
under PIN, a significant speedup can be obtained.

4 Code orchestration for instruction cate-
gorisation

The first analysis one can imagine when performing on-
line analysis of an executed trace is to categorise the in-
structions and see whether there is any significant differ-
ence when a program is written in one programming lan-
guage or another.

To speed up the instrumentation the trace-producing
Pintool was extended with an option to count and cate-
gorise the instructions during the execution and to com-
pute how much space would a disassembly trace (with
addresses) take. It uses the same categorisation of in-
structions as Intel XED [8], a disassembler built into Pin
(but also available as a separate project).

In order to isolate the part of the program which per-
forms the actual computation from the startup and I/O
we also developed a DLL exporting two functions which
serve as markers marking the beginning and the ending of
the interesting region, respectively. When the program is
instrumented by our Pintool these functions are detected
(by using export information) and replaced by routines in
the Pintool itself which toggle a flag signalling the tracing
routine that the interesting region of code is executing.

Furthermore, system libraries and C/C++ runtime co-
de are also filtered out. For C/C++ only the program exe-
cutable is traced. Only python.exe and python27.dll were
traced for Python. For Java, java.exe, jvm.dll, java.dll and
verify.dll were traced.

Isolation is performed by providing a list of modules
to be filtered to our Pintool. All code belonging to the
address space of the module is executed in the original
form, but unfortunately it can not be executed at native
speed since all code must pass through Pin’s VM so it
can maintain control of the program.

The Pintool can also differentiate between code gen-
erated at runtime (for example by JVM JIT) and code
loaded from the executable images. All code which does
belong to a section of an executable (or dynamic library)
image is considered as dynamically generated.

At the end of execution the Pintool produces a table
specifying the instruction count by category, marked/un-
marked and if it is dynamically generated. The size of
the disassembly trace is computed simply by summing
the lengths of disassembled basic block instructions that
would be written into a file as a trace.

Finally, the entire code is available at https://github
.com/JakaBac/TraceTool and https://github.com/JakaBac
/marker/tree/master.

5 Experimental results
To test the described orchestration four tests were de-
vised, each based on one the following four well-known
algorithms:

• the standard matrix multiplication (ijk- and ikj-
multiplications),

• Strassen matrix multiplication (running without es-
caping to standard matrix multiplication when the
size of the matrix becomes small),

• heapsort (iterative implementation) and
• quicksort (recursive implementation).

These test programs were written in C++, Java, and Python.
In all three cases, the most standard language tool avail-
able on MS Windows was used for each language: Visu-
alC++, Oracle’s Java SDK and CPtyhon, respectively.

For every test and for every language, i.e., C++, Java,
and Python, the ratio between the wall-clock time of the
plain executable and the PIN-orchestrated executable was
measured. The results are presented in Table 2. The size
of execution traces are presented in Table 3. In all matrix
multiplication tests matrices of 100 × 100 were used. In
all sorting tests tables of 100000 elements were used.



413

TESTCASE 1×C++ 10×C++ 1×Java 10×Java 1×Python 10×Python
MtxMul ijk 1.00 10.00 34.11 61.89 128.80 1288.15
MtxMul ikj 1.00 2.47 101.85 128.66 238.32 2383.47

Strassen 1.00 10.00 199.50 1784.97 128.25 1282.82
Heapsort 1.00 10.09 4.12 21.79 145.90 1459.09
Quicksort 1.00 10.07 15.34 27.82 90.81 915.84

Table 1: The number of instructions executed by each algorithm if run 1 or 10 times in a row relative to the number of instructions
executed by a C++ algorithm.

TEST CASE no PIN with PIN ratio
MtxMuxikj C++ 0.052 1.962 37.731

Java 0.192 31.961 166,464

Python 0.258 27.613 107.027

Strassen C++ 0.061 2.530 41.475

Java 0.674 79.833 118.447

Python 0.394 46.131 117.084

Heapsort C++ 0.069 1.776 25.739

Java 0.918 80.823 88,042

Python 0.901 97.440 108.147

Quicksort C++ 0.057 1.703 29.877

Java 1.073 82.904 77.264

Python 0.357 33.513 93.874

Table 2: The wall-clock time of test programs: every program
written in C++, Java and Python is measured when running with
and without PIN.

It follows from Tables 2 and 3 that producing and
analysing the execution traces of certain algorithms is
manageable even if the execution traces must be stored on
a disk. If the analysis can be performed on-line, one can
disregard the trace size and take the ratio between running
times of unorchestrated and orchestrated executables as
an indication that in most cases analyses can indeed be
carried out.

When comparing the instruction count of the same
program between different languages the patterns illus-
trated by the data in Table 1 can be observed. When the
problem is increased by a factor 10 then the Python in-
struction counts also increase by approximately the same
factor. C/C++ generally shows same behaviour, but in
some cases the factor is quite different. For example in
the MtxMult program (using IKJ indexing) the compiler
is able to vectorise the inner loop (compiler was allowed
to utilise AVX2 instruction set). By doing so, instruction
count is only 2.479 times bigger. It is also interesting
that the compiler chose to vectorise the loop only when
10 iterations was performed. With a single iteration no
vectorisation was carried out. When IJK indexing is used
the compiler cannot perform vectorisation in any case. It
can also be observed that the JVM is performing profiling
and various optimisations during the JIT compilation. In
this case the number of instructions does not follow the
increase of iterations. JVM did not perform vectorisation
in the IKJ MtxMult case.

Once the execution traces are obtained, it is possible
to categorise the instructions. Assuming the Intel’s own
categorisation [8], the compact representation of the cat-
egorisation of all instructions found in traces of all tests

TEST CASE trace size
MtxMuxikj C++ 446.981 Mb

Java 27024.72 Mb
Python 49886.81 Mb

Strassen C++ 1036.11 Mb
Java 148495.66 Mb

Python 100014.22 Mb
Heapsort C++ 1808.58 Mb

Java 91581.89 Mb
Python 235519.38 Mb

QuicksortC++ 911.54 Mb
Java 90099.81 Mb

Python 74920.26 Mb

Table 3: The size of execution traces produced by the test pro-
grams written in C++, Java and Python.

over all three programming languages is shown in Fig-
ures 1 and 2. Especially in Figure 2 it can be observed
a distinctive pattern of Python programs. C++ programs
have the least uniform categorisation. We attribute this to
the compile-time optimisation while the effect of just-in-
time compilation and optimisation performed by Java is
visible (but due to the lack of space not fully exposed).

6 Conclusion
In any case, it must be emphasised that the results shown
in Figures 1 and 2 cannot be understood as definite yet.
More testing must be done, with more different test and
different programming languages, before any definite con-
clusions can be made.

By looking at the differences in Figures 1 and 2 we
can understand why Knuth wanted to analyse programs
at machine code level and why he even invented his own
assembly language for this purpose. Even with seemingly
small changes to a program’s source code the same com-
piler may make different assumptions and produce differ-
ent machine code which may run on the target architec-
ture with different level of efficiency, which then distorts
high level performance measurements.

Finally, there are at least three important details that
were left out of this study: the cache misses, out-of-order
instruction execution, and threads. So far the information
about cache misses has not been gathered while record-
ing execution traces and it is yet to be seen if and how
this could be incorporated into the investigation. Out-of-
order execution is a matter of the CPU organisation and
nowadays it is often not fully disclosed by the CPU man-
ufacturer. Runtime environments of many programming



414

�
��
�
�
�����
���
�
�
��

�
��
�
�
�����
���
�
�
��
�

�
��
�
�
�����
���
�
�
�
��

�
��
�
�
�����
���
�
�
�
��
�

�
��
�
�
�����
���
�
��
�
�
��

�
��
�
�
�����
���
�
��
�
�
��
�

�
���
�
�
�
�
��
�
�
��

�
���
�
�
�
�
��
�
�
��
�

�
���
�
�
�
�
��
�
�
�
��
���
�

�
���
�
�
�
�
��
�
�
�
��
�
���
�

�
���
�
�
�
�
��
�
��
�
�
��

�
���
�
�
�
�
��
�
��
�
�
��
�

�
�
�
�
�
�
����

�
�
��

�
�
�
�
�
�
����

�
�
��
�

�
�
�
�
�
�
����
�
�
�
��

�
�
�
�
�
�
����
�
�
�
��
�

�
�
�
�
�
�
����
�
��
�
�
��

�
�
�
�
�
�
����
�
��
�
�
��
�

�
�
��
�
�
�
����

�
�
��

�
�
��
�
�
�
����

�
�
��
�

�
�
��
�
�
�
����
�
�
�
��

�
�
��
�
�
�
����
�
�
�
��
�

�
�
��
�
�
�
����
�
��
�
�
��

�
�
��
�
�
�
����
�
��
�
�
��
�

�
�
�
��
��
��
�

��������
������
�������
�������
����
���������
�����
����
����
���
���
�������
�������
����
�������

���
��������
���
�����
��������
���������
���
������
���������
����
������
����������
�������
�����
����

Figure 1: Instruction categorisation for various tests. Labels below the bars consists the test name, the programming language
and the number of repetitions of an algorithm within the test. In all cases, most instructions executed are either data transfers
(DATAXFER) or binary operations (BINARY).

�
��
�
�
�����

���
�
�
��

�
��
�
�
�����

���
�
�
��
�

�
���
�
�
�
�
��
�
�
��

�
���
�
�
�
�
��
�
�
��
�

�
�
�
�
�
�
����

�
�
��

�
�
�
�
�
�
����

�
�
��
�

�
�
��
�
�
�
����

�
�
��

�
�
��
�
�
�
����

�
�
��
�

�
��
�
�
�����

���
�
�
�
��

�
��
�
�
�����

���
�
�
�
��
�

�
���
�
�
�
�
��
�
�
�
��

�
���
�
�
�
�
��
�
�
�
��
�

�
�
�
�
�
�
����

�
�
�
��

�
�
�
�
�
�
����

�
�
�
��
�

�
�
��
�
�
�
����

�
�
�
��

�
�
��
�
�
�
����

�
�
�
��
�

�
��
�
�
�����

���
�
��
�
�
��

�
��
�
�
�����

���
�
��
�
�
��
�

�
���
�
�
�
�
��
�
��
�
�
��

�
���
�
�
�
�
��
�
��
�
�
��
�

�
�
�
�
�
�
����

�
��
�
�
��

�
�
�
�
�
�
����

�
��
�
�
��
�

�
�
��
�
�
�
����

�
��
�
�
��

�
�
��
�
�
�
����

�
��
�
�
��
�

�
�
�
��
��
��
�

��������
������
�������
�������
����
���������
�����
����
����
���
���
�������
�������
����
�������

���
��������
���
�����
��������
���������
���
������
���������
����
������
����������
�������
�����
����

Figure 2: Instruction categorisation for various programming languages. Labels follow the same convention as in Figure 2.

languages are inherently multi-threaded. Decoupling of
individual thread’s traces has not been performed so far
but it is planned for the future.

References
[1] D. E. Knuth, The Art of Computer Programming, Vol.

1 (Fundamental Algorithms), Addison-Wesley, Reading,
MA, USA, 1997.

[2] J. L. Larus, Abstract execution: A technique for efficiently
tracing programs, Software: Practice and Experience,
20(12), 1241–1258, 1990.

[3] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratana-
worabhan, N. B. Sam, The VPC Trace-Compression Al-
gorithms, IEEE Trans. on Computers, 54(11), 1329–1344,
2005.

[4] M. Hron, J. Jermar, SafeMachine malware needs love, too,
available at https://www.virusbulletin.com/
uploads/pdf/conference_slides/2014/spo
nsorAVAST-VB2014.pdf, last access: July 2017.

[5] M. Zhang, R. Qiao, N. Hasabnis, R. Sekar, A platform
for secure static binary instrumentation, Proc. of the
10th ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments VEE’14, Salt Lake
City, UT, USA, 28–140, 2014.

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, K. Hazelwood, Pin:
Building Customized Program Analysis Tools with Dy-
namic Instrumentation, Proc. of the 2005 ACM SIGPLAN
Conf. on Programming Language Design and Implemen-
tation (PLDI’05), Chicago, IL, USA, 190–200, 2005.

[7] S. Naftaly, Pin - A Dynamic Binary Instrumentation
Tool | Intel R© Software, available at https://soft
ware.intel.com/en-us/articles/pin-a-dy
namic-binary-instrumentation-tool, 2012,
last access: July 2017.

[8] M. Charney, XED Intel R© X86 Encoder Decoder Soft-
ware Library, available at https://software.
intel.com/en-us/articles/xed-x86-encod
er-decoder-software-library, 2015, last
access: July 2017.


