
ERK'2017, Portorož, 363-366 363

Data generator with a control over linear separability

Nejc Ilc
University of Ljubljana, Faculty of computer and information science

E-mail: nejc.ilc@fri.uni-lj.si

Abstract
Machine learning algorithms are developed to discover
hidden structure in data, e.g. algorithms for classifica-
tion and clustering. Usually, they address specific char-
acteristics of data to optimize their performance. As-
sessment and comparison of algorithms require enough
data, which demonstrate different levels of complexity of
certain characteristic under investigation. One example
of challenging characteristic is a linear separability of
classes. We propose a generator of two-dimensional data
that produces non-overlapping set of points of various
shapes and can control the level of linear separability
between classes. Thus, it enables benchmarking of al-
gorithms in a controllable and systematic manner.

1 Introduction
When assessing the performance of machine learning al-
gorithms, we usually measure their abilities on a collec-
tion of datasets from a certain problem domain. If these
data come from the real world measurements, we can-
not manipulate with the intrinsic characteristics of data.
However, this would be essentially useful when bench-
marking specific features of learning algorithms. This is
the reason some researchers create their own data in a
controllable manner. We call this procedure a synthetic
or artificial data generation.

One of the main challenges in machine learning, as
stated by the authors of the Fundamental Clustering Prob-
lems Suite [1], are data with classes that cannot be sepa-
rable by a hyperplane – we say they are not linearly sepa-
rable. In other words, data points of one class lie partially
or completely inside the convex hull of points from other
class. Recently, Elizondo et al. [2] even proposed to mea-
sure the level of data complexity by means of linear sep-
arability. To the best of our knowledge, no data generator
has been devised so far that is able to control the amount
of linear separability between classes. Our contribution,
a data generator, fills this void and opens the possibility
to systematically study and compare the performance of
learning algorithms on data with controllable distances
and amount of linear separability between classes.

The remainder of the paper is organised as follows. In
Section 2, we give an overview of existing synthetic data
generators. We introduce the proposed data generator in
the Section 3 and demonstrate its capabilities in Section

4. Finally, Section 5 concludes the paper with some fu-
ture work directions.

2 Related work
Little of published research in the field of data mining
had addressed systematic and reproducible synthetic data
generation before the work of Pei and Zaïane [3] in 2006,
who developed a versatile data generator for the purpose
of assessing the algorithms for clustering and outlier de-
tection. Their generator outputs two-dimensional numeric
data and enables a user to control the number and den-
sity of data points in each class, the number of classes in
dataset, the shape of point-sets classified into five diffi-
culty levels, the density function, and the level of back-
ground noise. The generator allows us to set the distance
between points in different classes indirectly by adjusting
shapes’ difficulty and density levels of classes. Conse-
quently, the classes in the generated dataset often overlap,
as we cannot define a minimal gap between the nearest
data points in the adjacent classes. We illustrate this issue
in Fig. 1, showing a screen-shot of Pei and Zaïane data
generator user interface, where five overlapping classes
were generated.

Figure 1: Problem of overlapping classes when using Pei and
Zaïane data generator.

364

When the purpose of a data generator is to mimic or
reproduce real-world problems, one may find it benefi-
cial to exploit a model of real data, which is what Eno
and Thompson did [4]. They proposed to build a model
of input data with decision trees and describe both the
data and the model with Predictive Model Mark-up Lan-
guage (PMML). Their main contribution is a generation
of synthetic data of any size with similar patterns as in
the original data. Analogous concept is investigated by
Marko Robnik-Šikonja [5] who proposed a semiartificial
data generator based on radial basis function neural net-
works.

Adä and Berthold developed the Modular Data Gen-
erator – an extension module of a visual data-mining tool
KNIME [6]. This module can be incorporated into a data-
processing work-flow and can be extended with new pro-
cessing modules. It is quite universal and covers data
generation for various problem domains, like shopping-
basket analysis, association rules, and cluster analysis.
The shortcoming of this generator is that we cannot con-
trol the distance between the classes dynamically as their
positions have to be predefined.

Frasch et al. proposed a data generator with control-
lable statistical properties [7] – the emphasis is on the
Bayes error rate. Data are generated by white Gaussian
densities with their means on the corner of a regular k-
simplex, e.g. vertices of a triangle in a 2-dimensional
space. We found it rather inappropriate due to the gen-
eration of the overlapping classes. Also, they are at most
hyper-ellipsoidal and therefore of a moderate difficulty
level.

3 Data generator with a control over linear
separability

We developed a synthetic data generator that is able to
produce two-dimensional datasets with non-overlapping
sets of points. A user can specify the number of classes,
the number of data points in each class, the shape and dis-
tribution of data points in a class, the minimal distance
between classes, and the degree of classes that are lin-
early separable (LS), i.e. how many pairs of classes are
separable by a line or a hyperplane in general.

To test whether two classes of data points are LS, we
employ linear programming using the Simplex method
[8]. We are searching for a hyperplane H in RD such
that it separates data points in one class from another. If
we find such a hyperplane, the corresponding classes are
LS and if not, we say they are not LS.

The data generator’s code is written in MATLAB and
is available at https://github.com/nejci/
data-generator-lin-sep.

3.1 Shape of a point-set
In order to manipulate distance and linear separability be-
tween classes we have to define the “body” of points in a
class. Here we employ α-shapes [9, 10] as a tool for de-
scribing the shape or silhouette of a set of points (point-
set) in the plane. The α-shape is a generalization of the

convex hull parametrized by the real non-negative num-
ber α that controls the level of details of the shape. The
smaller α is, the more detailed the shape of a point-set
gets, meaning that the boundary fits tighter around the
point-set, and vice-versa. So, when α → ∞ the α-shape
becomes the convex hull of the data points in the class.
We define an α-shape as follows: if the bounding circle
of an empty open disk with radius α passes through two
points then there is an edge connecting these two points;
α-shape is a set of all the edges that satisfies this condi-
tion. We set the value for α as the smallest disk radius that
produces an α-shape with only one region. Furthermore,
to avoid fragmented shapes with small holes in the mid-
dle we define an area threshold under which the holes are
suppressed. In our experiments, the 1% of a bounding-
box area suffice. In Fig. 2 we depict a class that con-
sists of 300 data points sampled from a shape of the letter
’A’ and the α-shape of this point-set. A close-up view
demonstrates the construction of an α-shape – there are
two circles with the radius α that intersects with exactly
two boundary points.

Our generator can produce 38 different shapes, some
of them are depicted in Fig. 3. The majority of the shapes
are identical to those defined by Pei and Zaïane [3] and
demonstrate different levels of complexity: compact and
spherical; elongated; with corners and holes that enable
embedding of points from other classes. Class members
can be drawn from the uniform or truncated normal dis-
tribution; the user can choose from the two or allow the
algorithm to pick one at random, i.e. mixed distribution.

α

close-up

Figure 2: An example of an α-shape on a point-set. Black dots
represent data points in a class, gray patch represents the body
of a point-set, and a black outline is a α-shape’s boundary.

3.2 Data generation algorithm
The main feature of our proposal is a control of the dis-
tance and linear separability between classes. Our gener-
ator produces two-dimensional data with non-overlapping,
crisp classes. This enables simple and efficient visual in-
spection. We developed an iterative algorithm that tries
to achieve this in a two-step procedure: first, we create a

365

new point-set and compute its α-shape. Then, it is being
moved towards the existing shapes until it collides with
one of them; second, fine-tuning of the new point-set’s
position is done by random rotations and translations.
The proposed algorithm and its inputs are discussed in
greater details in the following.

Input parameters:

• K: number of classes to generate,

• N: number of data points in each class; a vector of
K positive integers N = {n1, n2, . . . , nK},

• dmin: minimal distance between every pair of classes,

• L: number of pairs of classes that are not LS.

Additional algorithm options:

• S: stiffness - how many percent of distance be-
tween selected pair of classes is reduced on each
iteration on a coarse level [default: 0.5],

• Icoarse: the number of iterations in the first step, i.e.
coarse level of movement [default: 300],

• Ifine: the number of fine-tuning iterations in the sec-
ond step [default: 200],

• βcoarse: maximum angle of a random rotation in the
first step [default: π],

• βfine: maximum angle of a random rotation in the
second step [default: π2],

• tol: tolerance of dmin [default: 10% of dmin],

• shapes: list of shapes,

• dist: distribution of data points in the class; can
be uniform, truncated normal, or mixed, i.e. the
distribution is chosen at random between uniform
and truncated normal for each class [default: uni-
form],

• rgen: a distance from the centroid of the first-created
point-set to the position of the newly generated set
[default: 20].

A pseudocode of the data generator is listed in Algo-
rithm 2, helper functions are defined in Algorithm 1.

4 Evaluation and discussion
For illustration, we generated four datasets and plotted
them in Fig. 3 using various input parameters’ values of
the generator. The total number of data points in each
dataset is 500. The datasets were scaled proportionally
to fit in the interval [0, 1] in both dimensions. The main
generator’s parameters are listed in Table 1. We used the
default options’ values that are listed in Section 3.2.

We have already used the data generator in our thesis
[11] to produce benchmark datasets for the performance
evaluation of algorithms for cluster analysis and valida-
tion. Considering the adjusted Rand index for measur-
ing the similarity between a clustering and the ground

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5

1

a)

c)

b)

d)

Figure 3: Example datasets.

Table 1: Generator’s parameters used for examples.

Example K dmin L dist
a) 2 0.50 0 uniform
b) 6 0.30 0 uniform
c) 4 0.10 1 trunc. norm.
d) 8 0.08 2 mixed

truth, the algorithms performed less accurate when we
increased the number of classes that are not LS or we de-
creased the distances between classes.

5 Conclusion
We presented a novel synthetic generator of two-dimen-
sional data with a control over the linear-separability of
classes. It is capable of creating point-sets of complex
shapes with controllable minimal distance and the degree
of linear-separability between classes. The generator’s
code is open-source and we hope it will be helpful for
creating benchmark datasets for the systematic and con-
trollable evaluation of machine learning algorithms.

We plan to extend the presented data generator in the
future to produce datasets of dimensionality higher than
two. We will have to implement algorithm for n-dimen-
sional α-shapes as described in [12] and adapt the rou-
tines for scaling, translation, and rotation of a point-set.

References
[1] A. Ultsch, “Clustering with SOM: U*C,” in Workshop

on Self-Organizing Maps (WSOM 2005), (Paris, France),
pp. 75–82, 2005.

366

[2] D. A. Elizondo, R. Birkenhead, M. Gamez, N. Garcia,
and E. Alfaro, “Linear separability and classification com-
plexity,” Expert Systems with Applications, vol. 39, no. 9,
pp. 7796–7807, 2012.

[3] Y. Pei and O. Zaïane, “A synthetic data generator for
clustering and outlier analysis,” tech. rep., Department of
Computing science, University of Alberta, 2006.

[4] J. Eno and C. W. Thompson, “Generating synthetic data
to match data mining patterns,” IEEE Internet Computing,
vol. 12, pp. 78–82, 2008.

[5] M. Robnik-Šikonja, “Data Generators for Learning Sys-
tems Based on RBF Networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 5,
pp. 926–938, 2016.

[6] I. Adä and M. R. Berthold, “The New Iris Data: Mod-
ular Data Generators,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 413–422, 2010.

[7] J. V. Frasch, A. Lodwich, F. Shafait, and T. M. Breuel,
“A Bayes-true data generator for evaluation of supervised
and unsupervised learning methods,” Pattern Recognition
Letters, vol. 32, no. 11, pp. 1523–1531, 2011.

[8] D. Elizondo, “The linear separability problem: Some test-
ing methods,” IEEE Transactions on Neural Networks,
vol. 17, no. 2, pp. 330–344, 2006.

[9] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On the
shape of a set of points in the plane,” IEEE Transactions
on Information Theory, vol. 29, no. 4, pp. 551–559, 1983.

[10] H. Edelsbrunner, “Alpha Shapes – a Survey,” Tessellations
in the Sciences, pp. 1–25, 2010.

[11] N. Ilc, Clustering Based on Weighted Ensemble. PhD the-
sis, University of Ljubljana, 2016.

[12] H. Edelsbrunner, “Weighted alpha shapes,” tech. rep.,
University of Illinois at Urbana-Champaign, Department
of Computer Science, 1992.

Algorithm 1 Helper functions

1: function POINTSETCREATE(N)
2: shape← random element from the list shapes
3: c ← generate N data points that fill the shape

using the distribution dist.
4: Scale points in c by a random factor on [0, 1].
5: return c
6: end function
7: function POINTSETMOVE(c,a,b)
8: Move every point in the set c by b− a.
9: return c

10: end function
11: function POINTSETROTATE(c,a, βmax)
12: β ← random angle in the range [0, βmax].
13: Rotate points in c around point a by the angle β.
14: return c
15: end function
16: function BND(c)
17: b← points on a α-shape boundary of the set c
18: return b
19: end function

Algorithm 2 Data generator
Input: N, K, dmin, L
Output: X

1: c1 ← POINTSETCREATE(n1)
2: c1 ← POINTSETROTATE(c1, c1, 2π)
3: X← X ∪ c1
4: for i← 2 to K
5: ci ← POINTSETCREATE(ni) . ni ∈ N
6: ci ← POINTSETROTATE(ci, ci, 2π)
7: b← random point on a circle with radius rgen
8: ci ← POINTSETSMOVE(ci, ci,b)
9: c∗i ← ci

10: for iterc ← 1 to Icoarse . Step 1: coarse moves
11: cfix ← random point-set among 1 to (i− 1)
12: m← argminx{miny dE(x,y)},

where x ∈ BND(ci) and y ∈ BND(cfix)
13: m′ ←m+ S · (cfix −m)
14: ci ← POINTSETMOVE(ci,m,m′)
15: β ← rnd(−1, 1) · βcoarse · dE(m′, cfix) / rgen

. rnd(−1, 1) is a random number on (−1, 1)
16: ci ← POINTSETROTATE(ci,m′, β)
17: fineTuned← 0
18: for iterf ← 1 to Ifine . Step 2: fine-tunning
19: d ← minx,y{dE(x,y)}, where

x ∈BND(ci) and y ∈
⋃i−1
k=1BND(ck)

20: if d < dmin . If too close, move ci away.
21: m, f ← argminx,y{dE(x,y)},

where x,m ∈BND(ci) and y, f ∈⋃i−1
k=1BND(ck)

22: m′ ←m+ (m− f) / d · |d− dmin|
23: ci ← POINTSETMOVE(ci,m,m′)
24: β ← rnd(−1, 1)·βfine ·(1−iterf /Ifine)
25: ci ← POINTSETROTATE(ci, ci, β)
26: else
27: fineTuned← 1
28: break . End of fine-tuning.
29: end if
30: end for
31: l← num. of pairs of classes that are not LS
32: li ← num. of classes that are not LS with ci
33: if ci overlaps with any other class OR NOT

fineTuned OR l > L
34: ci ← c∗i . Reset move.
35: end if
36: stopDist← 0
37: stopLS← 0
38: if fineTuned AND |d− dmin| ≤ tol
39: stopDist← 1
40: end if
41: if l == L OR (L > 0 AND li > 0)
42: stopLS← 1
43: end if
44: if stopDist AND stopLS
45: break . Point set ci is in its final position.
46: end if
47: end for
48: X← X ∪ ci
49: end for

