
ERK'2017, Portorož, 367-370 367

On the computational cost of GVG-AI games and tree search
algorithms

Peter Mlakar, Tom Vodopivec
Faculty of Computer and Information Science, University of Ljubljana, Slovenia

E-mail: tom.vodopivec@fri.uni-lj.si

Abstract
The general video game AI (GVG-AI) competition is

becoming an established venue for benchmarking video-
game-playing algorithms. There, most high-ranking al-
gorithms use Monte Carlo tree search (MCTS) upon sim-
ulated future moves. The computation time of such simu-
lations strongly impacts the algorithms’ performance and
the values of their learning parameters. In our study we
overview the computational cost of the GVG-AI games
and explore which features contribute most to it – the
presented results can help MCTS researchers with offline
parameter tuning and with implementing approaches for
automatic (online) tuning based on the game-features we
identified as impactful.

1 Introduction
Most of the highest-ranking algorithms that compete in
the general video game AI (GVG-AI) competition [1]
use Monte Carlo tree search (MCTS) methods [2]. The
canonical MCTS algorithm, UCT [3], balances the ex-
ploitation and exploration dilemma [4, 5] with the help
of the UCB equation [6] and an exploratory constant
Cp. The optimal value of the constant – the optimal rate
at which the algorithm prefers exploration over exploita-
tion – is strongly dependant on the number of simulated
moves the algorithm can produce in a single search [7].
Consequently, the optimal value of the exploratory con-
stant is dependant on the computational cost of the un-
derlying problem – and it can vary wildly across different
problems. Given that the GVG-AI games significantly
differ both in terms of their dynamics, as well as in terms
of their computational cost, setting an overall efficient
value of Cp is non-trivial. To ease the process, in this
study we overview the computational cost of the GVG-AI
games and identify game features that are highly corre-
lated with it, and which could therefore be used for auto-
mated parameter-tuning. This can help improve the base
performance of several general game-playing algorithms
that use MCTS (or similar) algorithms as their backbone.

2 Background
We explain the MCTS framework in the context of the
GVG-AI competition, the difference between closed-loop

and open-loop implementations, and the dynamics of the
UCB equation used by MCTS algorithms.

2.1 The General Video Game AI Competition
The GVG-AI competition [8, 1] is a worldwide platform
on which researchers tackle the problem of general intel-
ligence in video games. Participants face the challenge
of creating a game agent, that has to play many different
game types. One game might require collecting items,
while another pushing boxes into right places. The games
run in real-time, allowing 40 ms of computational time
per each move. The games feed back to the controller the
current game state: a win/lose flag, a score, and a list of
observations – entities in the game. The constructed con-
trollers are tested in these games and ranked according to
the score they accumulate. The problem of general in-
telligence is far from trivial since one has to construct an
agent that has to play a variety of games without know-
ing the type of game it is playing. The results from all
GVG-AI competitions and the source code of the com-
peting controllers are available on the official GVG-AI
web page [9].

2.2 Monte Carlo Tree Search
Monte Carlo tree search [2, 7] represents a class of al-
gorithms that try to find the best set of actions that yield
the optimal result over a period of time. It works by in-
crementally building a tree structure, which it uses for
predicting the best possible actions for maximising the
reward. The nodes in the tree are game states derived
from taking actions from the initial state to the following
(simulated) states. The edges in the tree represent possi-
ble actions. The incremental building of the tree is broken
in iterations, where each iteration is made of four phases:
selection of actions based from the tree root till tree leaf,
expansion of the tree with new nodes, simulation of the
game till a terminal state is reached, and backpropagation
of the received feedback up the tree to the root state.

2.3 Closed-loop and open-loop implementations
The GVG-AI framework provides two implementations
of the MCTS algorithm described earlier: the closed-loop
and open-loop implementations [10] – the sampleMCTS
and sampleOLMCTS controllers, respectively. The two
differ in how they handle the simulation of game states
and expansion of the tree with new nodes.

368

The sampleMCTS controller, when expanding the tree,
stores the complete current game state into the newly-
added node. In this way, when it revisits the same state,
it does not need to simulate the move to get to this state
again, but rather only observes the copy of the state al-
ready stored in the node. This approach might require
less computational time when states get revisited often
and when copying them is less costly than re-simulating
moves, but it requires more memory and does not account
for stochasticity in the simulations.

The sampleOLMCTS controller does not save states
into nodes – it always moves to the next state by sim-
ulating moves, regardless if the algorithm already vis-
ited them before. This implementation is more flexible in
cases of stochastic games where the game state depends
on a random variable that governs some of its changes.

2.4 Upper Confidence Bound applied to trees
The canonical MCTS algorithm – UCT [3] – uses the
UCB1 formula (1) [6] at each tree node to balance ex-
ploration and exploitation of the search space:

UCBi = Qi + Cp

√
ln (n+ 1)

ni
(1)

where UCBi is the estimated UCB-value of the i-th child
in the current node, Qi is the [0, 1]-normalized value of
the node based on previous experience, n is the total num-
ber of visits of the parent node, and ni is the number of
visits of the evaluated child node. The parameter Cp gov-
erns the exploratory tendency of the algorithm – its value
can highly impact the performance, it is often set to a de-
fault constant value of

√
2. The equation consists of two

terms: the left term promotes the exploitation of the child
nodes that offer high average reward values, whereas the
right term promotes exploration.

3 Experiments
We describe our experimentation process, the selected
control variables, and the observed features.

We used the official GVG-AI framework from Oc-
tober 2016. The control variables for our experiments
were the choice of the GVG-AI game, the game level (5
per game), the framework-given game-playing controller
(a random-selection algorithm, sampleMCTS, or sample-
OLMCTS), and the value of the exploratory parameter Cp

(1
2

√
2,
√
2, or 2

√
2). For each combination of control vari-

ables in each 40-ms interval given per move we observed
the following: the number of simulated MCTS iterations,
the number of simulated moves – advances, number of
simulated episodes (of each game), the average duration
of the simulations (in moves), game board size, the aver-
age score the agent achieved in its simulations, the num-
ber of simulated wins and the number of observations in
the current (real) game state. The counts of simulated
advances and iterations allows us to compare the com-
putational cost of games and controllers. The number
of episodes differs from the number of MCTS iterations,
as iterations get truncated after 10 moves from the root

node (according to the original GVG-AI implementation
of MCTS), whereas episodes do not.

The measurements were conducted on all 72 games of
the GVG-AI framework. Each game contains 5 levels for
the agent to play through. Considering that games have
a duration of up to 2000 moves (of 40-ms each) in which
we measured the features described above, and that we
performed 20 repeats of each game, we collected up to
200000 samples of data per single combination of control
variables.

The measurements were conducted on a computer with
Intel(R) Core(TM) i7-5960X 3.00GHz CPU, 32GB DDR4
2133MHz memory, and Windows 7 operating system.

4 Results
Here we first provide a comparative overview of the com-
putational cost of the GVG-AI games, and then analyse
the correlation between the observed features and the com-
putational cost.

4.1 Comparison of computational costs
In the majority of GVG-AI games MCTS algorithms man-
age to simulate several hundreds of advances per 40 ms
(Figure 1). However, there is a substantial difference
between the two MCTS implementations: closed-loop
MCTS in average invokes 892.0 advances, whereas open-
loop MCTS invokes 1352.0 advances. This is expected,
due to the nature of closed-loop MCTS not invoking an
advance when visiting a state already stored in the tree (as
explained earlier). Nevertheless, the closed-loop imple-
mentation in average computes 119.8 MCTS iterations,
whereas open-loop 141.3 iterations (Figure 2). This shows
that an open-loop implementation is faster for GVG-AI
games – it seems more efficient to re-simulate previously
visited states rather than losing time and memory in copy-
ing them in the tree nodes.

Table 1 points out the three most demanding and the
three least demanding games1. When developing GVG-
AI algorithms it is meaningful to benchmark them on
these games, since they represent the two extremes – the
performance and behaviour of the algorithms might differ
wildly. In computationally heavier games the algorithms
perform less simulated moves per 40 ms and therefore
less MCTS iterations – the algorithms explore a smaller
portion of the search space and build a smaller tree. In
such case it is often better to set a smaller exploratory
tendency – to set Cp closer to 0, and vice versa.

The upward spikes of the number of iterations happen
near ending positions in games – the number of advances
per iteration gets low, because the game is terminating,
and thus the number of iterations (and episodes) per 40
ms gets higher.

4.2 Feature correlations
Whereas the results above help GVG-AI practitioners in
offline tuning of their game controllers, here we analyse

1Contact the authors for full results.

369

Average number of simulated advances per move (40ms)

200 500 1000 2000 3000 4500

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

g
a

m
e

s

1

1.01

1.02

1.03

1.035

MCTS

OLMCTS

Figure 1: The distribution of GVG-AI games according to the
computational cost. The latter is expressed as the number of
simulated moves (advances) that an algorithm produces in 40
milliseconds (this is the time allowed by the GVG-AI frame-
work to output a move), whilst the average number of games
expresses the average amount of games in which the agent
managed to simulate a certain (average) number of moves (ad-
vances) in 40 milliseconds.

Average number of simulated iterations per move (40ms)

20 50 100 200 400 600

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

g
a

m
e

s

1

1.01

1.02

1.03

1.04

1.05

MCTS

OLMCTS

Figure 2: The distribution of GVG-AI games according to the
computational cost, when the latter is expressed as the number
of simulated MCTS iterations in 40 milliseconds.

which game features are correlated with the computa-
tional cost and could be as such used for automated or
online parameter tuning.

The assessed features are listed in Section 3. Some
exhibit significant correlation with the computational cost
(Table 2), but the average number of observations in game
states is most strongly correlated both with the number of
advances per move (Figure 3) and with the number of it-
erations per move (Figure 4). The computed Pearson lin-
ear correlation coefficients are in the range [−0.35,−0.58]
(for the four data series presented in the two figures).
These results confirm that with increasing the number of
observation objects in the current game state, the com-
putational cost of simulating the game increases as well.

Table 1: The most and least computationally-demanding GVG-
AI games according to the number of simulated moves of an
open-loop MCTS algorithm.

Game name
Average number of simulated

advances in 40 ms
blacksmoke 291.0
boulderdash 377.7
lasers 438.0
jaws 3916.1
missilecommand 4381.5
whackamole 4487.3

Table 2: The correlation (Pearson coefficient) of GVG-AI game
features with the computational cost of a GVG-AI game (ex-
pressed as the number of simulated advances per 40 ms).

Game feature
Correlation with number

of simulated advances
Num. simulated episodes 0.24
Average win rate 0.22
Score in current state 0.03
Avg. episode duration -0.21
Num. observations -0.56

The correlation seems to be non-linear (note the logarith-
mic scale on the figures).

Considering the results above, we suggest that MCTS
practitioners measure the average number of observations
their agents encounter in the real game states and use this
as an input vector for online tuning of the exploratory pa-
rameter Cp (for example, with linear regression or with
more complex methods). Based on rough local experi-
ments with our controller ToVo1 we confirm such an ap-
proach improves the performance of the algorithm.

5 Related work
To our knowledge there are no studies of the impact of
GVG-AI game features on the computational cost of games
and MCTS-based agents, nor studies in using such fea-
tures for online parameter tuning. However, GVG-AI
game features were thoroughly studied for the purpose
of finding the most suitable algorithm for each game [12]
or for estimating game difficulty, which helped the re-
searchers identify well-performing combinations of MCTS
and evolutionary algorithms[11].

In the broader scope of MCTS, the learning parame-
ters are usually set and adjusted manually [7]. Automated
tuning of Cp was studied by Kozelek [13], but he based
the process on the variance of the feedback and not on
game features. Chaslot et al. [14] used a feature-based
cross-entropy method to tune parameters for playing the
game of Go, but the process was run offline – prior the
playing the game. There are some other methods for
tuning parameters [15, 16], but these are both specific to
Go, which is unlike ours, which covers a wide range of
(GVG-AI) games.

370

Average number of simulated advances per move (40ms)

50 100 200 500 1000 2000 3000 5000

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

si
m

u
la

te
d

o
b

se
rv

a
ti

o
n

s
p

e
r

m
o

v
e

 (
4

0
m

s)

0

200

400

600

800

1000

1100

MCTS

OLMCTS

Figure 3: The correlation between the number of simulated ad-
vances per move and the number of game-state observations.

Average number of simulated iterations per move (40ms)

6 50 500 869

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

si
m

u
la

te
d

o
b

se
rv

a
ti

o
n

s
p

e
r

m
o

v
e

 (
4

0
m

s)

43

100

300

500

700

900

1052

MCTS

OLMCTS

Figure 4: The correlation between the number of compute
MCTS iterations per move and the number of game-state ob-
servations.

6 Conclusion
In this paper we briefly introduced the general video game
AI (GVG-AI) competition and two basic Monte Carlo
tree search (MCTS) implementations. We experimentally
assessed the computational cost of the first 72 GVG-AI
games – we expressed it with the number of simulated
moves (game-state advances) and simulated MCTS iter-
ations in a single 40-ms time span. We evaluated the
correlation of the computational cost with several game
features and identified that the number of observations
(game entities) in the real game states are highly suitable
for predicting the computational cost of the game, and
as such are also suitable for automated online tuning of
MCTS parameters, especially for tuning the exploratory
tendency of the algorithm.

We aim at providing GVG-AI practitioners with guide-
lines about configuring their algorithms best according to
the computational cost of the games. We understand that
some parameters are dependant upon the number of iter-

ations or advances an agent is capable of executing. An
agent could collect the amount of observations in games
it is simulating, and from that data estimate the compu-
tational complexity of the game. We are positive that
this study can help GVG-AI practitioners with optimiz-
ing their parameters given some additional knowledge
about the game features, which can be gathered during
real-time with little overhead.

References
[1] D. Perez-Liebana et al.: General Video Game AI: Com-

petition, Challenges and Opportunities, Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, 2016

[2] R. Coulom: Efficient Selectivity and Backup Operators in
Monte-Carlo Tree Search, Computers and Games, 2006

[3] L. Kocsis, C. Szepesvari: Bandit Based Monte-Carlo Plan-
ning, Proceedings of the Seventeenth European Conference
on Machine Learning, 2006

[4] R. Sutton, A. G. Barto: Reinforcement Learning: An Intro-
duction, 1998

[5] R. Sutton, A. G. Barto: Reinforcement Learning: An Intro-
duction, Second Edition, in progress, 2017

[6] P. Auer, N. Cesa-Bianchi, P. Fischer: Finite-time Analy-
sis of the Multiarmed Bandit Problem, Machine Learning,
2002

[7] C. B. Browne et al.: A Survey of Monte Carlo Tree
Search Methods, IEEE Transactions on Computational In-
telligence and AI in Games, 2012

[8] D. Perez et al.: The 2014 General Video Game Playing
Competition, IEEE Transactions on Computational Intel-
ligence and AI in Games, 2015

[9] The General Video Game AI Competition,
http://www.gvgai.net/

[10] D. Perez et al.: Open Loop Search for General Video
Game Playing, Proceedings of the 2015 on Genetic and
Evolutionary Computation Conference, 2015

[11] H. Horn et al.: MCTS/EA Hybrid GVGAI Players and
Game Difficulty Estimation, Proceedings of the IEEE Con-
ference on Computational intelligence and Games, 2016

[12] P. Bontrager et al.: Matching Games and Algorithms for
General Video Game Playing, Artificial Intelligence and In-
teractive Digital Entertainment, 2016

[13] T. Kozelek: Methods of MCTS and the game Arimaa,
Master’s thesis, 2009

[14] G. Chaslot et al.: Cross-entropy for Monte-Carlo tree
search, European Workshop on Reinforcement Learning,
2008

[15] G. Chaslot et al.: On the huge benefit of quasi-random
mutations for multimodal optimization with application to
grid-based tuning of neurocontrollers, European Sympo-
sium on Artificial Neural Networks, Computational Intel-
ligence and Machine Learning, 2009

[16] A. Bourki et al.: Parameter tuning by simple regret algo-
rithms and multiple simultaneous hypothesis testing, Inter-
national Conference on Informatics in Control, Automation
and Robotics, 2010

