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Abstract
In this paper we investigate whether shallower CNN ar-
chitectures, which exhibit less parameters that need to be
learned, can be used in the domain of automated visual-
inspection of surface anomalies, while retaining a high
classification accuracy. We examine whether learning
can be done merely on positive examples as this further
reduces the overall computational complexity. We evalu-
ate a shallow CNN architecture on a dataset consisting of
different textured surfaces with variously-shaped weakly-
labeled anomalies. We find that high classification accu-
racy can be achieved with shallow CNN models.

1 Introduction
Visual inspection systems play a vital role in defect, i.e.,
anomaly detection during a manufacturing process in or-
der to ensure that the end-product is defect free. In the
domain of automated visual-inspection of surface ano-
malies, such as on steel surfaces [6], textured fabrics
[1] or wooden surfaces [7], modeling complexity increase
with increasing surface complexity. As such, the appear-
ance of anomalies varies in terms of pixel intensities, ge-
ometrical constraints and visual appearances as a whole.
For some real-world computer vision problems, engineer-
ing features with enough complexity to model certain un-
derlying patterns proves a devious task. The ability to
acquire features which describe the problem in an auto-
mated manner proves indispensable in such cases. Deep
learning, i.e., Convolutional neural networks (CNN) [4]
solve this central problem in representation learning by
building complex features out of simpler features. How-
ever, determining suitable network hyperparameters in
general requires a somewhat stochastic search over the
heyperparameter space, with the way the training data is
setup additionally impacting the performance. In this pa-
per we ran several experiments in order to determine the
most promising way in which to setup the training set for
the task of surface anomaly detection.

The remainder of the paper is structured as follows.
In Section 2 we provide a brief overview of related work,
followed by the description of of our approach in Sec-
tion 3. The experimental setup is described and results
are presented in Section 4. We conclude with the discus-
sion in Section 5.

2 Related work
Early work on utilizing a CNN for surface anomaly detec-
tion can be found in [6]. The motivation arises from the
aforementioned difficulty, where even domain specialists
struggle to devise accurate rules based on geometrical
and shape features for certain defects. Authors manage
to reduce the classification error by half over the classi-
cal approach with a classifier trained on feature descrip-
tors, which included a Multi Layer Perceptron (MLP)
and SVM with RBF classifiers trained on features ob-
tained via HOG, PHOG. Taking new deep learning re-
search insights into account, authors in [10] present an
overview of different design heuristics of CNN for in-
dustrial inspection. The paper examines the impact of
different hyper-parameter settings with respect to the ac-
curacy for anomaly detection. Evaluation is performed
on an artificial dataset, as shown in Figure 1, comprised
of different surfaces on which the goal is to detect ano-
malies. Although the dataset consists of artificially gen-
erated images, these imitate different textured surfaces
with variously shaped anomalies. Other work on utilizing
deep learning for anomaly detection can be found, such
as learning from photometric stereo images of rail sur-
face anomalies, where images depict differently colored
light-sources illuminating the rail surfaces from different
and constant directions, made visible in a photometric
dark-field setup [9]. Or the usage of deep learning for
non-trivial extraction of suitable features for the detec-
tion of rail surface anomalies from raw automated video
recordings [2]. The aforementioned papers showcase the
feasibility of utilizing deep learning for the problem of
detecting anomalies on different surfaces.

3 Our approach
Taking into account the problem domain of automated
visual-inspection of surfaces, i.e., mostly textured sur-
faces with present anomalies, we evaluate a rather shal-
low CNN architecture comprised of seven convolutional
layers, with approximately 7.5M parameters as shown in
Table 1. In general, this is in stark contrast to other ar-
chitectures, such as [10] or [8], where the depths range
mostly from 11 to 19 layers, and which exhibit substan-
tially more parameters which need to be learned, as in
the case of the ”depth-3”, ”width-2” model configuration
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Figure 1: A snapshot of the ten different-textured surfaces in the dataset. Each surface class exhibits additional intra-class variation
of the background texture. Red ellipses present coarse surface anomaly labeling, i.e., weakly labeled ground truth annotations as
these include areas which do not correspond to anomalies.

proposed in [10] with 21.5M parameters. We argue that
since the underlaying structures and patterns are limited,
contrary to datasets such as ImageNet, very deep CNN
are not necessarily needed in order to successfully learn
the underlying anomaly patterns.

Additionally, given the nature of the dataset — de-
scribed in Subsection 4.2 and used in [10] — we eval-
uate whether it is possible to learn anomaly representa-
tions merely from examples with an anomaly (positive
examples), rather than from positive and negative exam-
ples (surfaces wihout anomalies). We argue that since
for a given example an anomaly occupies a small portion
of an image depicting a textured surface, each example
provides positive and negative samples from which we
can learn. Furthermore, we are dealing with unbalanced
sets, as the majority of pixels correspond to negative (non
anomaly) samples and merely a fraction of pixels to pos-
itive (anomaly) samples, as can be seen in Figure 1.

Our approach further differs from [10] as: I.) We adapt
the final layers of our CNN to output a segmentation,
i.e., a probability map of anomaly locations — as pro-
posed in [5] — since this proves useful for labeling re-
gions on surfaces which contain an anomaly; II.) We train
CNN in a weakly supervised manner on whole images,
which contrasts the patch-wise approach in [10], trained
on around 1.3M generated examples. As we perform
training on a significantly smaller number of examples,
this additionally lowers the overall computation cost.

Table 1: The shallow 7-layer CNN model architecture. The
number in each row of the table corresponds to the number of
features used in that layer of our proposed architecture.

shallow-7
32

32 (stride 2)
64
64

512
512 (stride 2)

1024
Fully convolutional layer

Approximately 7.5M parameters

4 Experimental results
4.1 Experimental setup
We ran several experiments in order to determine: I.)
The best way to scale ground truth labels; II.) The most
promising way to setup the training set; III.) The detec-
tion accuracy when classifying the obtained probability

maps by means of simple thresholding. Experiments are
done with a fixed set of network parameters, i.e., convo-
lutional kernels are fixed to a size of 3 × 3 pixels with
a stride of one, as proposed in [8], except for the sec-
ond and sixth layer with a stride of two. Given an in-
put image of size 512 × 512 pixels, our network out-
puts a probability map of size 128 × 128 pixels. For all
layers within the network the ReLU activation function,
i.e., f(x) = max(0, x) is used, except for the last layer
where we use a linear activation function. All weights
are initialized with a normal distribution centered around
zero, as proposed in [3]. We optimize the mean-squared-
error loss function for 10 epochs with the Adadelta opti-
mizer [11], with the learning rate set to l = 0.75 and other
parameters left at default values as suggested in the pa-
per. CNN training was performed for each surface class
separately on as little as approximately 100 negative ex-
amples, i.e., examples containing an anomaly.

4.2 The DAGM dataset
The dataset for Industrial Optical Inspection1 consists of
artificially generated textured surfaces of size 512x512
pixels. There are ten different surface classes, each gen-
erated by a different texture and defect model. The entire
dataset consists of 8050 train examples of which 1046
contain anomalies, and 8050 test examples of which 1054
contain anomalies. For each surface class, there are ap-
proximately 100 images with present anomalies. If a given
surface contains an anomaly, it contains exactly one weak-
ly labeled anomaly on the background texture. Weak la-
bels are provided in form of ellipses which roughly in-
dicate a defective are on a given example, as shown for
each surface class in Figure 1.

4.3 Results
4.3.1 Ground truth scaling
We examine the effect of scaling ground truth labels, as
shown in Figure 3, either to the interval of [−1, 1] or
[0, 1], where −1 or 0 denote the surface background pix-
els, and 1 the pixels which correspond to an anomaly.
Figure 2 depicts the training set ROC curves and AUC
values. These are obtained by thresholding the probabil-
ity maps, obtaind with the CNN trained on each surface
separatly, from 0 to 1 — corresponding to the highest
expected probability — with a step size of 0.01. The
ROC curves in Figure 2 for Surfaces 4, 8 and 9 clearly
show that in our given case the best practice is to scale
the ground truth to the interval of [−1, 1].

1https://hci.iwr.uni-heidelberg.de/node/3616

https://hci.iwr.uni-heidelberg.de/node/3616
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Figure 2: Receiver Operating Characteristic (ROC) curve for each textured surface as shown in Figure 1. The curves are obtained
by means of simple thresholding each probability map for each surface from 0 to 1, and classifying an example as abnormal if at
least one pixel is above the threshold. The numbers below the curves indicate the area under the curve (AUC) for each test. The
figures indicate the probability that an example with an anomaly will be classified correctly (True positive rate) vs. the probability
that an example without an anomaly will be classified falsely (False positive rate). The legend is described in Table 2.

4.3.2 Training on different setups
Surface anomalies are only weakly labelled in the DAGM
dataset, as can be observed in 1. It is guaranteed that the
entire anomaly is contained within the encircling ellipse,
however also a significant portion of the regular surface
is labelled as well. Consequently, many image pixels are
wrongly labelled as problematic, which affects the learn-
ing process. This problem is to be expected in many real
world situations since very precise annotations of surface
anomalies are very difficult (and costly) to obtain. To re-
duce this problem we weight the values inside the ellipse
with Gaussian kernel, emphasizing the values in the cen-
ter of the ellipse (where the actual anomaly is most prob-
ably located), while decreasing the values of the labelled
pixels at the border of the ellipse, since these pixels are
most probably not affected by the anomaly.

We examine the effect of training our CNN on dif-
ferent setups, described in Table 2. These include weigh-
ing ground truth annotations with a Gaussian kernel, such
that a Gaussian of width 100 × 100 pixels and a sigma
of σ = 1 is transformed via the eigenvectors to the el-
lipses denoting abnormal regions, and, data augmenta-
tion, which is performed by simply rotating an example
image three times for 90◦ and mirroring the image via the
horizontal and vertical axis.

As can be seen from the AUC values and from the
qualitative examination of the probability maps given in
Figure 3 in column ”CNN model activations”, the clear-
est probability maps are obtained when either training the
CNN on merely positive examples which are weighted
with a Gaussian distribution and subjected to data aug-
mentation (P-GA), or, training the CNN on positive and

negative examples which are weighted with a Gaussian
distribution and subjected to data augmentation (P-negGA),
with the latter exhibiting the higher overall AUC value.

4.3.3 Probability map classification
For each surface we determine the optimal cutt-off thresh-
old value τi on the training set, from the probability maps
obtaind with the CNN trained on P-negGA. Each given
example in the test set is thus thresholded at τi. A given
example is classified as positive (having an anomaly) if
there is at least one pixel which is above the determine
threshold value. Results obtained with this simple thresh-
olding procedure as presented in Table 3.

Comparing our shallow CNN performance with [10]
in Table 3, we can see that our initial assumptions about
the CNN depth and learning from a smaller set of exam-
ples hold true in most cases. As can be seen, we reach
nearly state of the art performance with a shallow CNN
architecture, trained on a significantly smaller set.

Table 2: Figure legend explanation.
Name Description

P Model trained on positive examples
P-[0,1] P with ground truth scaled to the interval [0,1]
P-gauss P with Gaussian weighted ground truth
P-aug P with data augmentation
P-neg Model trained on positive and negative examples
P-GA P with Gaussian weighted ground truth and

data augmentation
P-negGA P-neg with Gaussian weighted ground truth and

data augmentation
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CNN model activation binarized
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Figure 3: Activation results on different examples from textured surface no. 1. The activations depict different performances for
intra-class background pattern variations w.r.t. emphasizing labeled regions and suppressing the background. The last column
represents the binarized activations from the training setup P-negGA, thresholded at the value τ = 0.51.

Table 3: Classification performance of our shallow CNN archi-
tecture trained on P-negGA vs. Weimer et al. [10].

Surface no. Ours Weimer et al.
TPR TNR TPR TNR

1 1.000 0.925 1.000 1.000
2 0.909 1.000 1.000 0.973
3 1.000 1.000 0.955 1.000
4 0.875 0.919 1.000 0.987
5 1.000 1.000 0.988 1.000
6 1.000 1.000 1.000 0.995
7 1.000 1.000 - -
8 1.000 1.000 - -
9 1.000 0.984 - -

10 1.000 1.000 - -

5 Conclusion
We find that our initial assumptions, which are: I.) We
can use shallower CNN architectures in the domain of
automated visual-inspection of surface anomalies, since
the underlaying structures and patterns which need to be
learned are limited; and II.) Since we are dealing with
unbalanced sets, where each example provides positive
and negative samples, learning can be done merely on
positive examples; hold true in most cases. Considering
our experimental setup, promising steps include scaling
the ground truth to the interval of [−1, 1] and performing
minor data augmentation. Given the results in Table 3,
merely Surface no. 4 needs to be further examined in or-
der to determine the cause of the lower classification ac-
curacy. It could be that in this case a deeper model would
potentially perform better. In future work we plan to fur-
ther improve the classification procedure by introducing
a CNN architecture with a regression output in addition
to the probability map output.

References
[1] Shuyue Chen, Jun Feng, and Ling Zou. Study of fabric defects

detection through gabor filter based on scale transformation. In
Image Analysis and Signal Processing (IASP), 2010 International
Conference on, pages 97–99. IEEE, 2010.

[2] Shahrzad Faghih-Roohi, Siamak Hajizadeh, Alfredo Núñez,
Robert Babuska, and Bart De Schutter. Deep convolutional neural
networks for detection of rail surface defects. In Neural Networks
(IJCNN), 2016 International Joint Conference on, pages 2584–
2589. IEEE, 2016.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[4] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learn-
ing. Nature, 521(7553):436–444, 2015.

[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully con-
volutional networks for semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431–3440, 2015.

[6] Jonathan Masci, Ueli Meier, Dan Ciresan, Jürgen Schmidhuber,
and Gabriel Fricout. Steel defect classification with max-pooling
convolutional neural networks. In The 2012 International Joint
Conference on Neural Networks (IJCNN), pages 1–6. IEEE, 2012.

[7] W Polzleitner. Defect detection on wooden surface using gabor
filters with evolutionary algorithm design. In Neural Networks,
2001. Proceedings. IJCNN’01. International Joint Conference on,
volume 1, pages 750–755. IEEE, 2001.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[9] Daniel Soukup and Reinhold Huber-Mörk. Convolutional neu-
ral networks for steel surface defect detection from photometric
stereo images. In International Symposium on Visual Computing,
pages 668–677. Springer, 2014.

[10] Daniel Weimer, Bernd Scholz-Reiter, and Moshe Shpitalni. De-
sign of deep convolutional neural network architectures for auto-
mated feature extraction in industrial inspection. CIRP Annals-
Manufacturing Technology, 2016.

[11] Matthew D Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.


