Zaznava regij sprememb Zemljinega površja s pomočjo slik InSAR

Danijel Žlaus¹, Domen Mongus¹

¹Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Koroška cesta 46, 2000 Maribor E-pošta: danijel.zlaus@um.si

Detection of regions of changes of Earths' surface using SAR imagery

European Commission has recently launched the Copernicus program with the objective to provide open Earth Observation data with high temporal resolution using Sentinel satellites. This paper proposes an approach for monitoring changes on the Earth's surface based on interferometry, applied on Sentinel 1 data. The height differences measured in this way are segmented and denoised in order to obtain accurate estimates of changes of volumes. The validation of the method, performed on Fogo Vulcan eruption from 2014, demonstrated that the achieved error is below 1

1 Uvod

Evropska komisija (ang. European Commision - EC) v sodelovanju z evropsko vesoljsko agencijo (ang. European Space Agency - ESA) je v procesu zagona programa Coppernicus. Cilj programa je stalno in samodejno zajemanje celotnega Zemljinega površja. Del programa so sateliti Sentinel, od katerih trenutno delujejo Sentinel-1A, Sentinel-1B, Sentinel-2 ter Sentinel-3. Vsi podatki iz satelitov Sentinel so prosto-dostopni širši javnosti preko spletnega portala SciHub[1]. V delu smo se osredotočili na podatke iz Sentinel-1, saj lahko iz njih izvlečemo natančne spremembe Zemljinega površja. Sentinel-1 uporablja za delovanje radar s sintetično odprtino (ang. Sythetic aparture radar - SAR), ki deluje v radarskem pasu C (5.405Ghz). SAR je aktiven senzor in deluje v vseh vremenskih pogojih in urah dneva. Optični sistemi so tipično pasivni in so omejeni na sončno stran Zemlje ter jasno vreme. SAR za zajem slike odda radarski impulz ter meri povratni signal, iz katerega je razvidna moč odboja ter fazni zamik, vrednost katerih je zapisana kot kompleksno število.

Posnetki SAR so tipično uporabljeni za spremljanje poplav[2], premikov zemlje[3][4][5], ocenitev popotresne škode[6]ter sledenje ledu v oceanih[7].

V tem delu predstavljamo metodo za določitev regij sprememb, ki jih pridobimo iz posnetkov SAR. V poglavju 2 predstavimo postopek izmere višinskih sprememb površja Zemelje. V poglavju 3 predstavimo postopek segmentacije, ki nam omogoča določitev dejanskih premikov in šuma. Poglavje 4 opisuje validacijo metode, med tem ko poglavje 5 podaja zaključek.

Slika 1: Postopek pridobitve segmentov razlik v višini

2 Pridobitev višinskih sprememb

Pri obdelavi radarskih slikah razumemo intenziteto in fazni zamik odboja. Fazni zamik pa lahko uporabimo fudi za natančno določitev razlik v višini. To naredimo tako, da iz dveh poravnanih radarskih slik, zajetih v različnih časovnih intervalih, tvorimo interferogram[8]. V interferogramu je faza ϕ (enačba 1) zavita na interval $[-\pi, \pi]$ in je sestavljena iz več faznih komponent.

$$\phi = \phi_{curv} + \phi_{dem} + \phi_{dis} + \phi_{atm} + \phi_{sens} \qquad (1)$$

- ϕ_{curv} ukrivljenost gladke zemlje,
- ϕ_{dem} višin terena,
- ϕ_{dis} razlike v terenu med posnetkoma,
- ϕ_{atm} atmosferski šum
- ϕ_{sens} naključni šum senzorja

Po izračunu interferograma (slika 2) se pojavi več obrobij (ang. fringes), ki so posledica faznega prispevka

Slika 2: Pridobitev interferograma

Slika 3: Odstranitev faznega prispevka gladke zemlje

Slika 4: Odstranitev faznega prispevka terena

Slika 5: Odstranitev šuma senzorja

 ϕ_{curv} in zavijanja faze z modulom 2π . Fazni prispevek ϕ_{curv} simuliramo z uporabo eliptičnega modela Zemlje in znanih koordinat, kota gledanja ter smeri potovanja satelita. Izračunan prispevek odštejemo, kjer nam ostane samo še prispevek terena (slika 3), kjer se število obrobij znatno zmanjša. Tudi prispevek terena ϕ_{dem} simuliramo z uporabo digitalnega modela reliefa (ang. digital elevation model - DEM). Bolj pravilen in natančen je uporabljen DEM, bolje lahko simuliramo prispevek ϕ_{dem} in po odštetju dodatno zmanjšamo število obrobij (slika 4). V primeru da so spremembe terena manjše od valovne dolžine, bo interferogram brez obrobij. Preostaneta še ϕ_{atm} in ϕ_{sens} , kjer ϕ_{atm} ni možno računsko odstraniti, saj trenutno modeli atmosfere in porazdelitve delcev v njej niso dovolj natančne zaradi nizke ločljivosti simulacij. Lahko pa vpliv ϕ_{atm} minimiziramo, tako da uporabimo par posnetkov, ki sta časovno čim bližja. Sentinel-1 zajema slike iz danega geografskega področja z 12 dnevno frekvenco (6 dni od Aprila 2016), kar razumemo kot visoko časovno ločljivost. Šuma samega senzorja ϕ_{sens} v delu nismo minimizirali, ampak je bil odpravljen s filtriranjem fazne slike z Goldsteinovim filtrom[10] (slika 5).

Slika 6: Odvita faza

Slika 7: Razlike višin terena

Preostane odvijanje faze, kjer fazo iz zavitega intervala $[-\pi, \pi]$ preslikamo v celoštevilsko fazo $[-N\pi, N\pi]$. Najtežavnejši del odvijanja faze so prehodi skozi obrobja, saj tam ni mogoče enolično določiti števila celoštevilskih spremembe. Za odvijanje faze smo uporabili metodo[9] v programskem orodju SNAPHU[11] (slika 6). V odviti fazi je več grobih prehodov, ki so napake pri odvijanju

Slika 8: Maska pozitivnih razlik višin B_p

Slika 9: Maska negativnih razlik višin B_n

faze. Filtriranje teh napak bo obravnavano v koraku segmentacije. Vseeno pa lahko sedaj odvito fazo pretvorimo v sliko razlik višin I_h (slika 7).

3 Zaznava regij sprememb

Dobljene razlike višin ločimo v pozitivne in negativne višine. Masko obeh lahko dobimo s pragovnim filtriranjem slike I_h (enačba 2 in 3, slika 10 in 11).

$$B_p(p) = \begin{cases} 1 & \text{če } I_h(p) > 0, \\ 0 & \text{drugače} \end{cases}$$
(2)

$$B_n(p) = \begin{cases} 1 & \text{če } I_h(p) < 0, \\ 0 & \text{drugače} \end{cases}$$
(3)

Nad vsako masko uporabimo algoritem rasti regij ter z uporabniško nastavljivim parametrom σ odstranimo vse regije, ki vsebujejo manj slikovnih elementov kot σ (slika

Iz binarnih mask B_p in B_n želimo izvleči zgolj večje regije sprememb. Da izločimo slikovne elemente, ki pripadajo regijam manjšim od uporabniško nastavljivega parametra σ , nad sliko izgradimo seznam povezanih komponent z 8-sosedništvom in izvedemo odpiranje okolice. Naj C_i prestavlja *i*-to povezano komponento v vhodni sliki, kjer je komponenta sestavljena iz množice slikovnih elementov ospredja, $C_i = (p_0, p_1, ..., p_n), \forall_{p \in C_i} I(p) =$

Slika 10: Odstranitev regij iz maske B_p ($\sigma = 2500$)

Slika 11: Odstranitev regij iz maske B_n ($\sigma = 2500$)

1. Dva elementa slikovna ospredja pripadata isti povezani komponenti C_i kadar med njima obstaja pot $(p_0, p_1, ..., p_n)$. Poljubna elementa H in K pripadata isti komponenti kadar $H = p_0, K = p_n$ in $\forall_{1 < i \le n} R(p_{i-1}, p_i) = 1$, kjer $R(p_{i-1}, p_i)$ predstavlja razdaljo med elementoma. Operator odpiranja okolice iz slike odstrani vse elemente povezanih komponente C_i kadar $|C_i| < \sigma$, kjer $|C_i|$ predstavlja število elementov v povezani komponenti.

Slika 12: Referenčna segmentacija, kjer svetle regije predstavljo pozitivne razlike in obratno.

Vrednost σ	Segmentirane regije glede na σ (m^3)	Referečna segmentacija (m ³)
1	-666,033.787	$-669,\!600$
200	$-670,\!355.196$	-
1,000	$-671,\!674.398$	-
2,000	$-675,\!185.087$	_
4,000	$-673,\!811.248$	-
4,999	$-673,\!811.248$	_

Tabela 1: Primerjava sešteveka pozitivnih in negativnih razlik volumnov glede na referenčno segmentacijo

4 Rezultati

Za potrditev natančnosti predstavljene metode smo rezultate metode primerjali z refenčno segmentacijo, katero nam je pripravil domenski ekspert (slika 12). Razliko volumna, ki nam jo poda predstavljena metoda, primerjamo z referenčnimi podatki. Primerjava pri izbranih vrednosti σ je prikazana v tabeli 1. Tudi ob večjih vrednosti parametra σ je razlika volumnov, v primerjavi z referenčnimi podatki, manjša od 1%. Volumen V, ki ga prispeva vsak slikovni element izračunamo glede na enačbo 4, kjer slikovni element razumemo kot regijo velikosti $10m \ge 20m$. Razlike dodanega ter odstranjenega volumna, glede na različne vrednosti uporabniško nastavljivega parametra σ , so prikazane v grafu 4. Za izračun dodanega in odstranjenega volumna doprinosa in odnosa volumna je potrebno enačbo 4 obtežiti z koeficintom B_p oziroma B_n .

$$V = \sum_{p \in I_h} 20m * 10m * I_h(p)$$
(4)

5 Zaključek

V delu smo predstavili metodo za zaznavo regij sprememb Zemljinega površja, z uporabo pragovnega filtriranja nad interferometrično sliko. Odpravljanje šuma smo izvedli s povezanimi komponentami, natančneje z atributnim odpiranjem. Skozi validacijo smo pokazali, da predstavljana metoda omogoča natančno zaznavo in ovrednotenje sprememb, saj vnese zgolj 1% napake glede na ekspertne analize.

6 Zahvala

Raziskovalni program št. P2-0041 je sofinancirala Javna agencija za raziskovalno dejavnost Republike Slovenije iz državnega proračuna.

Literatura

- [1] SciHub, https://scihub.copernicus.eu/
- [2] Refice, Alberto, et al. SAR and InSAR for flood monitoring: Examples with COSMO-SkyMed data."IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7.7 (2014): 2711-2722.
- [3] Massonnet, Didier, and Kurt L. Feigl. "Radar interferometry and its application to changes in the Earth's surface."Reviews of geophysics 36.4 (1998): 441-500.
- [4] Singhroy, Vern, et al. "InSAR monitoring of post-landslide activity."Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference on. IEEE, 2006.
- [5] Colesanti, Carlo, and Janusz Wasowski. "Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry."Engineering geology 88.3 (2006): 173-199.
- [6] Park, Sang-Eun, Yoshio Yamaguchi, and Duk-jin Kim. "Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR."Remote sensing of Environment 132 (2013): 212-220.
- [7] Karvonen, J. "Operational SAR-based sea ice drift monitoring over the Baltic Sea."Ocean Science 8.4 (2012).
- [8] Rosen, Paul A., et al. Synthetic aperture radar interferometry."Proceedings of the IEEE 88.3 (2000): 333-382.
- [9] Chen, Curtis W. Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry. Diss. Stanford University, 2001.
- [10] Goldstein, Richard M., and Charles L. Werner. "Radar interferogram filtering for geophysical applications."Geophysical research letters 25.21 (1998): 4035-4038.
- [11] SNAPHU, https://web.stanford.edu/group/radar/ softwareandlinks/sw/snaphu/