
ERK'2018, Portorož, 380-383 380

Drone control using gestures

Jaka Cikač1, Friedrich Fraundorfer2, and Danijel Skočaj1
1University of Ljubljana, Faculty of Computer and Information Science

2Graz University of Technology, Institute of Computer Graphics and Vision
E-mail: jaka.cikac@gmail.com

Abstract
Quadcopters are becoming more popular and integrated
into modern society. Currently we are familiar with con-
trolling quadcopters via our mobile phones. In this work
we develop a gesture control system that can be used on a
low-cost quadcopter equipped with a simple RGB camera
and a powerful embedded computer. The system is split
into three modules - action detection with optical flow,
human pose estimation with CNNs and gesture classifi-
cation with relational features computed on the human
pose. We assembled our own dataset called DS2017, in
which 640 gestures are performed by 20 people. We show
that action detection can detect actions sufficiently well,
the human pose estimation works very well at high speed
and gesture classification achieves high accuracy.

1 Introduction
As quadcopters get smaller and more affordable there are
many new possibilities for their use. It is not uncommon
to find drones at many university laboratories, research
institutes and now even normal households. This opens
up the possibility of making drones a part of people’s
lives to perform simple tasks or simply be very interest-
ing toys. There are countless enthusiasts using drones
equipped with the latest video capturing technology to
provide stunning aerial views. However, there is always
a needed component - control. Without the ability to con-
trol drones in a safe and efficient manner they are not re-
ally useful. There are now various ways of controlling the
drones from manual flight (remote controller) to mobile
application control. Manufacturers are even using VR to
provide first person views of drone’s flight using special
goggles (FPV) and on-board cameras.

This work will focus on controlling the drones by us-
ing gestures. Hands free control would enable the op-
erators to focus more on what they are doing, be it an
activity that requires their physical engagement or rather
just enjoying the scenery.

1.1 Problem definition
We set out to lay the ground work on how drones could be
controlled using full-body gestures without any external
devices, such as motion detectors and RGB-D cameras.
Instead, the system is computer vision based. In order to
be able to “see” the gestures, a drone should be equipped

with an RGB monocular camera, from which a video feed
of the user can be processed using computer vision, to es-
timate the human pose and further recognize and classify
the gestures that are performed.

1.2 Related work
The field of gesture recognition has, in recent years, been
explored to many depths, which can be seen from the
many surveys that have appeared, such as [1].

One example of gesture controlling drones is [2]. In
their work authors researched, which gestures seem nat-
ural for users to interact with the drone and what kind of
modality (gestures or voice) the users used. They found
that users used the same gestures as people use for con-
veying information to their pets or even interpersonal ges-
tures such as come here, stop, come closer, move left, etc.

The main limitations of gesture control on drones come
from computational power required on the on-board pro-
cessor, it’s camera system and it’s payload capacity. For
that reason most gesture control systems that were devel-
oped, require external devices and an off-line computer
that could run the recognition algorithms. One of such
examples is [3] where authors used a Parrot AR Drone
and Microsoft Kinect to evaluate different metaphors for
conveying controls for a variety of flying operations sup-
ported by the UAV.

Researchers in [4] created an implementation of ges-
ture control using an inexpensive drone, the Parrot AR,
and it’s on-board RGB camera. The system was based on
face tracking and hand gestures. Since the Parrot AR is
lacking an on-board computer, everything needed to be
processed on an off-line PC. The user would also have to
wear colored gloves, so that the drone would be able to
detect and track them. It also limited drone’s movements
in a very restricted space near the user.

One example of gesture control where, in theory, the
UAV is not limited to the area near the user is [5], where
authors wanted to track and recognize gestures for sig-
naling aircraft. They created a dataset of NATOPS air-
craft handling signals and a unified framework for body
and hand tracking. Our work was partially inspired by
this framework, but there are major differences. Authors
of [5] use a 3D camera that is stationed on the ground.
However we aim to implement a similar framework di-
rectly on the UAV with only a monochrome camera. In



381

this paper we present the main functionalities of the de-
veloped system and summarize the experimental results;
further details are given in [6].

2 System design
The gesture control system is composed of three main
components. The first important component of the sys-
tem is action detection. We use action detection in order
to improve computational efficiency of the whole system.
The second component is pose estimation in order to ob-
tain important features for gesture classification which
infers the performed gesture. This final component pro-
vides the command to the drone. We need to detect when
the action or gesture is taking place in a video sequence
so that we can focus the processing power on a particular
segment on which we use complex pose estimation algo-
rithms that provide us with important features. The result
of pose estimation is a set of joint positions as coordi-
nates in an image. We use a state of the art method for
pose estimation [7]. This method is based on deep convo-
lutional neural networks (DCNNs). This choice obliges
us to use a specific powerful GPU, that is not available
on the drone. Despite this the system is still ready for
real-time and on-line deployment. Gesture classification
has been implemented on top of pose features in a bag of
words approach. We learn gestures as words and then try
to match a newly detected action to these words using an
SVM classifier. In the following subsections we describe
in more detail each component of the gesture control sys-
tem and its underlying methods. A system overview dia-
gram is shown on Figure 1.

Figure 1: Three modules of the gesture control system:
action detection, pose estimation, and gesture classifica-
tion.

3 Methodology
3.1 Action Detection with person tracking
Action detection is split into three sub modules. We first
detect the person with a person detector based on His-
tograms of oriented gradients [8], which provides ini-
tialization coordinates for a short-term tracker Adaptive
Scale Mean Shift (ASMS) [9] that keeps track of a per-
son through subsequent frames. We chose this particu-
lar tracker because it is extremely fast and performs well
due to its awareness of background appearance and scale
adaptation. Since tracking is a hard task, we make it eas-
ier by re-detecting a person every number of frames. Af-
ter we are sure that we have the person localized we em-
ploy a dense grid around the person in which we calcu-
late the optical flow using the Lucas-Kanade method. We
filter the optical flow using RANSAC [10], so that only

the person generated optical flow points remain. After
filtering we count the optical flow points in 5 consecu-
tive frames that form a chunk and classify it with a linear
SVM, which decides if there was enough points, or not,
to consider the chunk as an action. Chunks are buffered
into circular buffers, which provide continuous function-
ality and additional filtering of false positives and false
negatives. A flow chart of action detection with its sub-
modules is shown on Figure 2. Frames on which action
was detected are forwarded to a real-time pose estimation
module.

Figure 2: Overview of the action detection sub modules:
person detection, visual tracking, optical flow estimation,
determining action presence.

3.2 Human Pose Estimation
We chose a method called Real-time Multi-Person 2D
Pose Estimation using Part Affinity Fields [7] (MPE-PAF)
as the main method for real-time person estimation. It
was the first method to deliver real-time performance for
pose estimation and it works for multiple people at the
same time. Like CPMs [11] it is a method based on deep
convolutional neural networks and inherits many ideas of
CPMs, which were proven to have a very accurate pose
estimation performance. MPE-PAF is a bottom-up ap-
proach that does not require a person detector. It has an
architecture for jointly learning parts detection and parts
association, which are then parsed with a greedy pars-
ing algorithm to produce human pose estimation. This
approach is not as accurate as CPMs but it does not per-
form much worse. Its main advantage is of course speed.
Benchmarks were ran on a laptop version of NVIDIA
GeForce 1080-GTX GPU, with which the authors obtain
real-time performance of 8.8 FPS for a video with 19 peo-
ple, making it an ideal choice for a real-time gesture con-
trol system.

3.3 Gesture Classification
After the pose is estimated, we are given a set of body
joints for each frame in the detected action, which al-
lows for certain features to be computed. The descriptor,
which is a combined set of various features, computed
on the body joint positions, is referred to as Pose Fea-
tures. This descriptor combines positional features and
relational features that describe geometry between com-
binations of joints. It was shown that a combination of
these two types of features produce the best results for
gesture classification [12]. All joint positions are normal-
ized to [0, 1]. After normalization of joint positions, pose
features are computed. In this work we compute features
on a set, which is annotated with 15 joints per frame. We



382

calculate position features, distance features, orientation
features, angle features and temporal features.

Position features are simply the normalized joint co-
ordinates. Distance features are computed between com-
binations of pairs of joints. For joint pairs the distance
between the joints is computed. Orientation features be-
tween joint pairs are computed as the orientation of the
vector connecting two joints with respect to the neck-
to-belly orientation. Then angle features are computed,
represented by the inner angle of two vectors that span
triplets of joints. Finally temporal features are computed.
Temporal features consist of differences of features be-
tween two or more adjacent frames. In total this gives us
3180 features per frame, which make up the Pose Fea-
tures frame descriptor.

After computing Pose Features we perform K-means
clustering to quantize the descriptors into clusters. After
the centers of clusters are returned we calculate the dis-
tance of each frame descriptor to each cluster and find
the closest cluster center. After this is done for each
frame, we end up with a histogram representing the whole
video (action). The histogram is then normalized. His-
tograms are collected into a database and used as features
for training the SVM. We use a radial basis function for
the kernel.

For feature classification we therefore use a Bag of
Words method trained on such descriptors. In the infer-
ence stage a similar procedure is used. After the pose is
estimated on the frames that were deemed to contain an
action, Pose Features are computed on each of them and
the closest cluster center is found for the assembled de-
scriptor. Then a histogram is assembled, normalized and
then sent to the SVM for classification, which produces
the result - a given action by the user.

4 Experimental results
4.1 DS2017 dataset
In our experiments we used 4 main gestures, namely up,
down, left and right. For these 4 gestures we have cre-
ated a controlled gestures dataset and an intuitive dataset.
Each of these two categories is further split in a set of
videos with a steady camera and the second with a mov-
ing camera, simulating the movements of the drone. There-
fore we have 4 sub-sets in total, controlled-steady set,
controlled-unsteady set, intuitive-steady set and intuitive-
unsteady set.

The DS2017 consists of videos of 20 people, per-
forming 640 gestures in 80 videos. Every video is anno-
tated for action detection with 5 frames granularity and
split into gestures then categorized in one of the 4 main
categories. We limited the scenes to relatively homoge-
neous backgrounds, with equal illumination throughout
the video. Although there are some examples where this
does not hold. There is always a single person in the
video, which is performing a gesture and in general the
person does not move around on the scene. Two exam-
ples of video sequences showing the gesture up are pre-
sented in Fig. 3.

Figure 3: DS2017 dataset; two examples of gesture up:
controlled (top) and intuitive (bottom).

The purpose of a controlled gesture set is to have a
very distinct set of gestures, that are very exuberantly per-
formed in a standardized manner, potentially resulting in
more optical flow points and have similar Pose Features
descriptors, even when different people perform the ges-
ture. It is meant to serve as a standardized controlled ex-
periment, on which the algorithms would be evaluated. A
more challenging part of the dataset are intuitive gestures,
which are more natural to how a human would gesture
a drone, intuitive and more fluent. These actions were
not thoroughly regulated or explained to the people who
would perform them in order to encourage variability of
gestures from person to person.

We created two types of such datasets considering dif-
ferent acquisition conditions. Steady sub-sets were taken
on a stabilized camera, so that there is no movement of
the background. Unsteady videos were taken without any
stabilization and random movements of the camera were
introduced. These movements are meant to simulate a
flying drone, with issues with stabilization or influence
from the windy environment.

4.2 Performance evaluation
We evaluated the proposed system on our dataset DS2017.
Here we report the classification accuracy after the video
is sent through the whole pipeline. We evaluate the ges-
ture sets separated on steady and unsteady sets. The ac-
tion detection algorithm detected the action in 83,13% of
cases, or on 133 out of 160 test gesture videos in total.
In the pose estimation model most issues occur with ges-
tures intuitive down and controlled down due to the criss-
crossing of the person’s hands in front of their body. The
pose estimation also struggles when there are hard shad-
ows and under exposed frames. The movement of the
drone does not impact the quality of the pose estimation
algorithm.

Gesture classification accuracy is considered with un-
detected gestures taken into account, to show the com-
plete system performance. In other words, if the action
detection module failed to detect an on-going action, it
is treated as miss-classification. For each category the
classification accuracy is presented in a confusion matrix,



383

(a) Control Steady (b) Control Unsteady

(c) Intuitive Steady (d) Intuitive Unsteady

Figure 4: Confusion matrices for the evaluation of the
gesture control system on DS2017 categories, which in-
clude the undetected gesture rates. If the gesture was not
detected with the action detection module, it is treated as
miss-classified and presented as category “undetected”.

which also includes undetected gestures, on Figure 4. If
action detection successfully detects the action however,
the classification accuracy is 96.8%.

The highest overall accuracy is achieved on the Con-
trolled unsteady gesture set, with an overall accuracy of
81%, as shown on Figure 4b. The lowest classification
accuracy is achieved on Intuitive unsteady gesture set, as
shown on Figure 4d, with an overall accuracy of 73%.
The results confirm that the action detection module is
struggling with detecting gesture up, which decreases the
classification accuracy in all categories, except for cat-
egory Control steady, where the gesture right has the
lowest accuracy. The overall accuracy achieved for In-
tuitive steady gesture set is 76%. Overall accuracy for
Controlled steady gesture set is 77%.

4.3 Runtime evaluation
From a detected action to the final gesture prediction it
takes 2,14 s, measured on a PC with a Core i7 4770K
(3.5 GHz). The whole pipeline would run slower on a
quadcopter, due to a less powerful CPU. However, most
time is spent for pose estimation (2,03 s for a gesture on
25 frames), run on an external PC, so the total time would
not be much longer. The entire pipeline would work in
real-time on an on-board computer, if equipped with a
sufficiently powerful GPU, such as a future version of
NVIDIA Jetson TX 2.

5 Conclusion
We developed a three-phase gesture control system, by
first detecting when the action is happening on the video,
with a fast person detector, a fast tracker and optical flow.
After detecting the action, we use a state of the art method
to estimate the human pose on the frames that contain an
action. The method uses DCNNs and is able to achieve

real-time performance. After getting the locations of joints
in the human pose, we compute relational Pose Features,
that provide features for SVM classification, which pre-
dicts the final gesture.

We present the dataset DS2017 that features 640 ges-
tures performed by 20 people. The system is able to de-
tect actions in 83% of cases, having more success with the
controlled gestures, while intuitive gestures are a harder
challenge. We also found that the method [7] is extremely
good in estimating the human pose on our dataset, strug-
gling only when the hands criss-cross, as seen in gestures
“down”. We are also able to reach a high classification
accuracy of 96.8% on our DS2017 dataset for the final
gesture prediction.

References
[1] H. Cheng, L. Yang, Z. Liu, Survey on 3D hand gesture

recognition, IEEE Transactions on Circuits and Systems
for Video Technology 26 (9) (2016) 1659–1673.

[2] J. R. Cauchard, K. Y. Zhai, J. A. Landay, et al., Drone &
me: an exploration into natural human-drone interaction,
in: Proceedings of the 2015 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, ACM,
2015, pp. 361–365.

[3] K. Pfeil, S. L. Koh, J. LaViola, Exploring 3D gesture
metaphors for interaction with unmanned aerial vehicles,
in: Proceedings of the 2013 international conference on
Intelligent user interfaces, ACM, 2013, pp. 257–266.

[4] J. Nagi, A. Giusti, G. A. Di Caro, L. M. Gambardella,
Hri in the sky: controlling uavs using face poses and hand
gestures.

[5] Y. Song, D. Demirdjian, R. Davis, Tracking body and
hands for gesture recognition: Natops aircraft handling
signals database, in: Automatic Face & Gesture Recogni-
tion and Workshops (FG 2011), 2011 IEEE International
Conference on, IEEE, 2011, pp. 500–506.

[6] J. Cikač, Drone control using gestures, Master’s thesis,
University of Ljubljana, Faculty of Computer and Infor-
mation Science, Slovenia (2017).

[7] Z. Cao, T. Simon, S.-E. Wei, Y. Sheikh, Realtime multi-
person 2D pose estimation using part affinity fields, in:
CVPR, 2017.

[8] N. Dalal, B. Triggs, Histograms of oriented gradients for
human detection, in: Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on, Vol. 1, IEEE, 2005, pp. 886–893.

[9] T. Vojir, J. Noskova, J. Matas, Robust scale-adaptive
mean-shift for tracking, Pattern Recognition Letters 49
(2014) 250–258.

[10] M. A. Fischler, R. C. Bolles, Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography, Communications of
the ACM 24 (6) (1981) 381–395.

[11] S.-E. Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, Con-
volutional pose machines, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016, pp. 4724–4732.

[12] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, M. J. Black, To-
wards understanding action recognition, in: International
Conf. on Computer Vision (ICCV), 2013, pp. 3192–3199.


