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Abstract

Discriminative correlation filters (DCF) have attracted
significant attention of the tracking community. Standard
formulation of the DCF affords a closed form solution,
but is not robust and constrained to learning and detec-
tion using a relatively small search region. Spatial regu-
larization was proposed to address learning from larger
regions. But this prohibits a closed form solution and
leads to an iterative optimization with significant compu-
tational load, resulting in slow model learning and track-
ing. We propose to reformulate the spatially regularized
filter cost function such that it offers an efficient optimiza-
tion. This significantly speeds up the tracker (approxi-
mately 14 times) and results in real-time tracking at the
same or better accuracy.

1 Introduction

Visual object tracking is a task of continuous target local-
ization given an initial position in first frame of the video
sequence. Significant advancements have been made in
the field over the recent years, largely due to a number
publicly available benchmarks and steps towards stan-
dardized performance evaluation [1, 2, 3, 4].

Most recent developments have focused on discrim-
inative correlation filters (DCF), which were primarily
proposed for object detection [5]. The idea of learning
discriminative correlation filters for tracking has been pro-
moted by the seminal paper of Bolme et al. [6]. Further
improvements by other authors included correlation fil-
ter with kernels [7], multiple-channel formulation [8] and
scale estimation with DCF [9, 10].

In DCF tracking the target is localized using a filter
which is learned on a pre-defined (Gaussian) response
on the training image. The standard formulation of DCF
uses circular correlation which allows to implement filter
learning efficiently by Fast Fourier transform (FFT) but
requires the filter and the patch size to be equal which
limits the detection range. Due to the circularity, the
filter is trained on many examples that contain unrealis-
tic, wrapped-around circularly shifted versions of the tar-
get. These windowing problems were recently addressed
by [11, 12] using the boundary constraints and by Dan-
neljan et al. [13] who introduce spatial regularization to
penalize filter values outside the object boundaries. All
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Figure 1: Training patch and spatial weight function are shown
on the left. Yellow rectangle represents target region. Three fil-
ters are shown on the right (top to bottom): filter calculated with
a closed form solution (Equation 1), and two filters obtained
with iterative optimization methods Gauss-Seidel and ADMM
optimization.

these approaches train from image patches larger than the
object and thus increase the detection range.

Spatially regularized discriminative correlation filter
(SRDCF) [13] shows a great potential and trackers us-
ing this method [14, 15] achieve excellent performance
on recent benchmarks. But the spatial regularization pre-
vents using a closed form solution as in standard formu-
lation [6] and iterative optimization has to be used. This
optimization is based on Gauss-Seidel steps which simul-
taneously solves a large number of equations and leads
to a very slow solution. Despite excellent performance,
SRDCEF is of limited use in practical application since it
runs far below real-time.

We propose to reformulate the spatially regularized
filter cost function such that it affords an efficient opti-
mization by using alternating direction method of mul-
tipliers (ADMM) [16]. Since all steps in optimization
are performed pixel-wise, this significantly speeds up the
tracker (approximately 14 times) and results in real-time
tracking of approximately 29fps at the same or better ac-
curacy.

2 Discriminative Correlation Filters

In the standard DCF formulation [6], the filter h is trained
to output a desired response g when correlated with a



training sample f, i.e., g = Z?Zl h; xf;, where * denotes
a circular correlation and the training sample f consists of
d-channel feature maps, therefore h contains d channels.
The following cost is minimized in filter learning:
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An efficient closed-form solution for (1) is obtained via
the Fourier domain:
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where (A) represents Fourier transform, i.e., & = F(a),
the symbol ( ) is complex-conjugate operation and ® is a
Hadamard product. Target is localized by finding position
of the maximum peak in the correlation response r:
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i=1

where F~! represents an inverse Fourier transformation.

2.1 Spatially Regularized DCF

The SRDCEF [13] tracker introduces a spatial weight func-
tion w which penalizes large filter values further away
from the target center. It avoids the windowing problem
due to the circular correlation in Fourier domain and it
reduces impact of the background in the filter. The visu-
alization of the penalty function w and the resulting filter
is shown in the Figure 1. Penalty function is incorporated
in a standard DCF formulation (1) by adding a spatial
regularization term, i.e.,
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An iterative Gauss-Seidel optimization is used to solve
a linear system of equations resulting from (4). The size
of the linear problem is dM N x dM N, where M, N,
and d are width, height and number of feature channels,
respectively, resulting in slow computation despite carry-
ing it out in Fourier domain. We refer the reader to [13]
for complete derivation of the optimization.

3 Proposed Method

We propose to reformulate the cost function (4), which
can be decomposed into independent per-pixel (or per-
frequency in the relevant Fourier-transformed terms) sub-
problems,
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where N is number of pixels. Note that h; and f; are d-

dimensional column vectors and g; and w are scalars on
j-th pixel. The subscript j is omitted in the following due
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to the compactness of the notation. An auxiliary variable
w 1is introduced and the cost function (5) is augmented
with the constraint w = h, leading to an augmented La-
grangian formulation

L(h,1,w) = [FTh — g||> + M ||wew|? + ©6)
Mol +17(h - w) + £|h - w]?,

where 1 is a Lagrange multiplier and p > 0 is a parameter.

The cost function (6) is solved following the alternate
direction method of multipliers (ADMM) [16] by alter-
natingly solving two subproblems:
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The first derivative in (7) is equivalent to Vﬁﬁ = fffh—
g+ \oh + %fl — L&, where ()" is a Hermitian trans-
pose. Setting the derivative to zero yields the following
solution

h=(FF7 + 2) " (5 + gax ©)

where Ay = Ao + 5.

The first part of (9) represents a matrix inverse calcu-
lated for each pixel, which is computationally demand-
ing. This can be avoided by using a Sherman-Morrison-
Woodbury formula [17] leading to
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which simplifies (9) into
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The derivative in (8) yields the following solution:
Vol = 2\iww — 1 — ph — Sw. Setting it to zero,

leads to
1+ ph
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Since h, w and 1 are used in (11) and (12) the final
solution for filter h is calculated iteratively, i.e.,
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where k represents the iteration index.

4 Tracking with augmented SRDCF

A tracking iteration in each frame consists of two main
steps: target localization and update of the visual model.
Both steps are described in the following.

Target localization. When a new frame arrives at
time step ¢, an image patch four times larger than target



size is extracted from the image, centered on the target
position from previous time step p;—1. A 41-channel fea-
ture map f; is calculated from the extracted image patch,
corresponding to 31 HoG [18] and 10 colornames [8]
channels. Circular correlation between the feature chan-
nels f; and filter from previous time-step h;_; is calcu-
lated in the Fourier domain (3). Position of the corre-
lation output maximum p; presents the new target po-
sition. Change of target size is estimated using the ap-
proach from [10].

Update. Target appearance is expected to change dur-
ing tracking due to the numerous effects like, rotation, de-
formation or scale change of the target. The visual model
is therefore updated after the target is localized. An image
patch four times larger than target size is extracted from
image centered at p; and a feature map f; is calculated.
A new filter h; is calculated using method described in
Section 3. Filter from the previous time-step is denoted
as h;_1 and it is combined with l~1t using a moving aver-
age, resulting in an updated filter

h; = (1 —n)hy_; + nh,. (16)

This filter is used in the next time-step to localize the tar-
get. Parameter 7 = (.01 is a learning rate which controls
the impact of the new filter in h,. The update is per-
formed in the Fourier domain for efficiency.

5 Experiments

The proposed tracker, the augmented SRDCF (SRDCF, )
is compared to the original SRDCF [13] on VOT16 [2]
(Section 5.1) and on OTB100 [4] (Section 5.2). Speed
comparison is given in Section 5.3

5.1 VOTI16 dataset

The VOT16 [2] dataset consists of 60 sequences which
are chosen so that the dataset is moderately large, but
rich in attributes relevant for tracking. A standard reset-
based experiment [1] is performed by running a tracker
on each sequence until overlap of the predicted target po-
sition with the ground-truth is zero. This event is called
failure and after that the tracker is reinitialized. Tracking
performance is measured by accuracy, robustness and ex-
pected average overlap (EAO). Robustness measures av-
erage number of failures and accuracy represents average
overlap. Expected average overlap combines both mea-
sures into the single number and it can be interpreted as
expected overlap at the typical sequence length in short-
term tracking scenario.

In the Table 1 tracking performance of SRDCFj, is
comparable to the original SRDCF. The SRDCF4 has 6%
less failures, a lower average overlap (4%), but a 4% bet-
ter expected average overlap. The similar performance
indicates that the filter calculated with ADMM optimiza-
tion is comparable to the filter calculated with Gauss-
Seidel optimization for tracking tasks.

5.2 OTB100 dataset

The OTB100 [4] dataset consists of 100 sequences. A
tracker is in each sequence initialized on the first frame
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Table 1: Accuracy (Acc.), robustness (Rob.) and expected av-
erage overlap (EAO) for SRDCF and SRDCF4 on the VOT16
dataset. The sign 1 denotes high is better and | denotes low is
better.

Tracker Acc.T Rob.| EAO*
SRDCF,  0.51 142 0.2520
SRDCF  0.53 1.52  0.2431

and run to the end, which is called a no-reset experiment.
Tracking performance is measured by the area-under-the-
curve (AUC) on the success and precision plots, shown
in Figure 2. The success plot shows overlap threshold
values on x and the proportion of frames with the overlap
between the predicted and ground truth bounding boxes
as greater than a threshold on y. The precision plot shows
a similar statistics computed from the center error.

Results are shown in the Figure 2. The difference be-
tween the original SRDCF and the SRDCF4, is negligible
(approximately 1% better AUC on both graphs). This fur-
ther supports the equivalence of the learned filters by the
slow Gauss-Seidel and our fast ADMM formulation from
tracking performance perspective.
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Figure 2: Tracking performance on the OTB100 [4] dataset.
The area-under-the-curve (AUC) is shown in brackets in the leg-
end.

5.3 Speed comparison

Our main motivation behind reformulation of the SRDCF
cost function (6) is computational efficiency. The origi-
nal tracker runs on average at 2 frames-per-second which
is far from real-time and it presents a serious limitation
for practical tracker application. In this section we com-
pare speed measurements of the original SRDCF and the
proposed SRDCF, which uses the ADMM optimization.
Both trackers are run on the 60 sequences of VOT16 [2]
dataset using a no-reset experiment and tracking speed is
averaged over all sequences.

In each frame time needed to process the whole frame
is measured including target localization and filter cal-
culation stage, without image loading from disk. Addi-
tionally, filter calculation step is reported separately, to
demonstrate the difference between the both optimization
methods. Since original SRDCF requires a significant
pre-computation overhead performed only in the initial-
ization frame, time needed to process the first frame is



reported separately. All experiments were conducted on
the same desktop Intel i7 6700 CPU, 3.4 GHz and 16GB
RAM computer.

Results of the speed comparison are presented in the
Table 2. Time for the initialization required by the SRDCF
tracker is almost 2 seconds while ADMM-based SRDCF 5
takes only 47 milliseconds, which is more than 40-times
faster. Considering only filter calculation step, the Gauss-
Seidel optimization takes in average 329 milliseconds,
while ADMM optimization needs only 9 milliseconds.
Average per-frame speed of the original SRDCF is 2FPS
(480ms per frame), while SRDCF, achieves over 14-
times faster performance running at 29FPS (34ms per
frame).

Table 2: The average times needed for tracker initialization and
filter calculation are shown in the first two columns. Average
tracking speed is presented in milliseconds and in frames-per-
second (third and fourth column).

Init. Filter Average Average
Tracker ' [ms] [ms]  [FPS|
SRDCF, 47 9 34 29
SRDCF 1814 329 480 2

6 Conclusion

In this paper an optimization method for spatially regular-
ized discriminative correlation filter based on the ADMM
method [16] is derived. The optimization is used to min-
imize the cost function from the popular SRDCF [13]
tracker. We show experimentally that tracking perfor-
mance of our version of SRDCF using ADMM optimiza-
tion method is slightly better than the original method.
In addition, the speed of the proposed tracker is more
than fourteen times faster than original version, running
in real-time at 29 frames-per-second. In our future work
we plan to test different spatial weight functions and to
incorporate learning from multiple training samples.

Acknowledgements

This work was supported in part by the following re-
search programs and projects funded by the Slovenian
research agency ARRS: project ViAMaRo (J2-8175) and
research program P2-0214.

References

[1] M. Kristan, J. Matas, A. Leonardis, T. Vojir,
R. Pflugfelder, G. Fernandez, G. Nebehay, F. Porikli, and
L. Cehovin, “A novel performance evaluation methodol-
ogy for single-target trackers,” IEEE Trans. Pattern Anal.
Mach. Intell., 2016.

M. Kristan, A. Leonardis, J. Matas, M. Felsberg,
R. Pflugfelder, L. éehovin, T. Vojir, G. Héger, A. LukeZic,
and G. et al. Fernandez, “The visual object tracking
vot2016 challenge results,” in Proc. European Conf. Com-
puter Vision, 2016.

(2]

375

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

M. Kiristan, A. Leonardis, J. Matas, M. Felsberg,
R. Pflugfelder, L. Cehovin Zajc, T. Vojir, G. Hager,
A. Lukezic, A. Eldesokey, and G. Fernandez, “The visual
object tracking vot2017 challenge results,” in The IEEE
International Conference on Computer Vision (ICCV),
2017.

Y. Wu, J. Lim, and M. H. Yang, “Object tracking bench-
mark,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,
no. 9, pp. 18341848, Sept 2015.

C. F. Hester and D. Casasent, “Multivariant technique for
multiclass pattern recognition,” Applied Optics, vol. 19,
no. 11, pp. 1758-1761, 1980.

D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui,
“Visual object tracking using adaptive correlation filters,”
in Comp. Vis. Patt. Recognition. 1EEE, 2010, pp. 2544—
2550.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista,
“High-speed tracking with kernelized correlation filters,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp.
583-596, 2015.

M. Danelljan, F. S. Khan, M. Felsberg, and J. van de Wei-
jer, “Adaptive color attributes for real-time visual track-
ing,” in 2014 IEEE Conference on Computer Vision and
Fattern Recognition, CVPR 2014, Columbus, OH, USA,
June 23-28, 2014, 2014, pp. 1090-1097.

Y. Li and J. Zhu, “A scale adaptive kernel correlation filter
tracker with feature integration,” in Proc. European Conf.
Computer Vision, 2014, pp. 254-265.

M. Danelljan, G. Héger, F. S. Khan, and M. Felsberg,
“Discriminative scale space tracking,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 39, no. 8, pp. 1561-1575,
2017.

H. Kiani Galoogahi, T. Sim, and S. Lucey, “Correlation
filters with limited boundaries,” in Comp. Vis. Patt. Recog-
nition, 2015, pp. 4630—-4638.

A. Lukezig, T. Vojif, L. Cehovin Zajc, J. Matas, and
M. Kristan, “Discriminative correlation filter with chan-
nel and spatial reliability,” in Comp. Vis. Patt. Recognition,
2017, pp. 6309-6318.

M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Fels-
berg, “Learning spatially regularized correlation filters for
visual tracking,” in Int. Conf. Computer Vision, 2015, pp.
4310-4318.

M. Darnelljan, A. Robinson, F. S. Khan, and M. Felsberg,
“Beyond correlation filters: learning continuous convo-
lution operators for visual tracking,” in Proc. European
Conf. Computer Vision. Springer, 2016, pp. 472-488.

M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Fels-
berg, “Eco: Efficient convolution operators for tracking,”
in Comp. Vis. Patt. Recognition, 2017, pp. 6638-6646.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations
and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122,
2011.

R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed.
New York, NY, USA: Cambridge University Press, 2012.

N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in Comp. Vis. Patt. Recogni-
tion, vol. 1, June 2005, pp. 886—893.



