
ERK'2014, Portorož, B:48-51 48

Out of chaos in 12 months - improving lead time of sprint

projects in software development implementing Drum Buffer

Rope Solution

doc. dr. Tomaž Aljaž
1

1
 Šolski center Celje, Pot na Lavo 22,3000 Celje

E-pošta: tomaz.aljaz@gmail.com

Abstract

This is a case study about implementing common sense

changes in managing software development area. It’s

an example how Theory of Constraints (TOC)

applications can reinforcing the beliefs of management

and encourage them to do the right thing – making just

a few simple changes, collecting less data, spending less

time on overhead and administration and do more tasks

that benefit the whole development process (and

organization).

The software development team is developing and

maintaining more the 70+ applications. The sprint

project on average takes 5 working days of work, but

lead time is almost 8 times longer. The backlog of sprint

projects was constantly increasing, the due date

performance for all non-mandatory development

request was very poor. The development requesters

were unhappy. Last year, supported by top

management, activities were started in order to break

existing situation. By performing analysis using TOC

tools and applications understanding what needs to be

done was identified, especially how production Drum-

Buffer-Rope solution can be used. With almost 20%

reduction of resources, no changes to how the team

performed software development tasks like design,

coding and testing, the changes to how the work was

queued and estimated resulted in a reduction of lead-

time by 40%. The backlog was reduced by more the

50%, improving investment for development by 40%

and improved satisfaction of development requesters.

This paper shows how tools and application of TOC,

especially Drum-Buffer-Rope solution, provides

meaningful improvements in (software) development

area, without a need to make changes in technology, but

focusing on the management, planning, scheduling and

queuing of development tasks.

1 Introduction

The company has internal software development team

that is responsible for developing solutions for 70+

applications on two major functional areas. Majority of

development is requested by internal users, mainly

trigger by regulatory requirements (strict and short

deadlines). The development activities are divided into

three areas: (1) sprint projects, (2) projects and (3)

maintenance and support. The same resources are

working in both development and also in maintenance

& support tasks. There are also different decision

bodies, with different participants, managing software

development. In the reminder of the document, we will

focus on the management of sprint projects.

Up to mid 2013, all sprint projects were approved on

monthly meeting, with »sooner we approve the

development requests, sooner it will be finished«

manner. There was no commitment on delivery date

(except on mandatory deadlines imposed by regulator),

on best effort principle (if we will have time, we will do

it) and without any global prioritization criteria. There

were also “short-cuts” for development approvals,

expediting line, done by approval of IT director or

personally with direct interaction between internal user

and development team (each developer had big backlog

of development requests). Also there was no strict

authorization policy implemented in software

development change management tool to limit the state

changes in workflow – there was “trust” that no one will

take advantage or to expedite own development or

maintenance requests.

Last year’s situation on sprint project shows that

development tasks are unequally balanced with high

backlog of sprint projects. The majority of tasks are

stuck in software development department, as shown in

bellow.

Figure 1: Number of sprint projects based on dev. phase

Clearly, a lot of specifications were prepared (and

workload estimation) usually far before development

has started, thus spending valuable time of resources

49

preparing functional specifications for a tasks that will

probably needs to be done all over again. There is big

change that information system will be changed on

application and specifications / design (and workload

estimation) will need to be done again, with no

guarantee that the resource that did the estimate would

be the same resource that did the work before.

Historical data (gathered over at least 12 months)

showed that a typical sprint project took 37 business

days to process through development. The low end was

1 day and the high end was 232 days. Furthermore,

analysis was done on average lead time of sprint

projects, where average lead-time was compared to

reported workload. We identify opportunity window:

- Average lead time was 37 working days; and

- Average reported workload was 5 days.

%86.

37

5
1

_.

_.
1.





windowOpp

timeleadAv

timerepAv
windowOpp

Cleary, the existing solution of managing development

requests have big opportunities for improvements.

Several (main) undesirable effects were identified, using

Theory of Constraints Thinking Process [2]: lack of

common management / view of development requests,

unclear responsibilities, different approval bodies, no

common prioritization criteria, lack of common view on

resources, spending time on overhead activities, etc.

2 The need for new development process

The need for new “development process was identified,

where the main goal (strategy) was defined.

As “the flow” is the major consideration, the

applications of Theory of Constraints (TOC), in

particular it was identified that Drum Buffer Rope

solution can be used.

The TOC assumes that each organization is represented

by number of processes, which are interconnected and

interdependent. Therefore, we can compare organization

with the power of "chain", where the power of the

whole chain is limited by the strength of the weakest

link. In the case of organizations, this means that its

results depend on the “performance” (speed, quality) of

the weakest link. Moreover, the weakest link in

organization represents system limitation and restricts it

to achieve better results. Consequently, this means that

any improvements on the link, which is not the weakest,

(usually) do not provide meaningful improvements -

may cause more negative consequences (e.g., increasing

inventory level, stock of uncompleted work). The TOC

defines the “weakest link” in an organization as a

constraint.

In order to achieve the most of current organization, five

focusing steps are defined by the TOC [3]:

- Identify the system's constraint(s) (that which

prevents the organization from obtaining more

of the goal in a unit of time)

- Exploit the system's constraint(s) (get the most

out of the constraint, e.g. avoid unnecessary

idle time, farm out work to other resources

where possible)

- Subordinate all other resources to the

constraint (align the whole system or

organization to support the constraint's

operation, e.g. prioritize repair and

maintenance, change process batch size on

non-constraints.)

- Elevate the system's constraint(s) (make other

major changes needed to increase the

constraint's capacity, e.g. buy a new machine)

- Warning! If in the previous steps a constraint

has been broken, go back to step 1, but do not

allow inertia to cause a system's constraint.

Additionally, The Drum-Buffer-Rope (DBR) [6] is

powerful and robust TOC solution that is intended to

manage the flow of work through a (development)

process rather than managing the capacity of resources.

It is designed to protect against general cause variation

that can’t be removed from the system and some special

cause variation (e.g., Murphy). As basis for its work it

uses first three steps of five focusing steps defined by

TOC: Identify the system constraint, decide how to

exploit the system constraint and Subordinate

everything else to the above decisions. Basic principle

of DBR is shown in Figure 22.

Figure 2: Basic principles of DBR

Based on the new findings, existing development

process was slightly changed, mainly at initial part of it

and accordingly implemented within existing Change

management tool. Also additional control was done on

roles that allow development request classification and

approval, providing strict control for releasing new tasks

in development process.

All development requests are initiated by internal users

using “proposal” form and sent for approval. For

development requests it is required to fulfill related Key

Performance Indicators, which are used for ranking

purposes. The development request is then classified,

defined application that will be upgraded / used, rank

The speed needed to develop a solution is the

number one consideration. The target is not how

many development tasks are started, but how

many development tasks are completed (in time

and within the approved budget).

50

(prioritize) and estimated workload (cost). The rank can

only be modified by top management, using

“correction” factor. If the workload (or cost) exceeds

the number for sprint projects, the request is moved to

Project Management office and top management for

approval – separate stream and is out of this document

scope. As result, central repository of all development

requests was build with global ranking and application

classification.

Figure 3: Strict control for releasing new tasks

3 How to improve speed of sprint projects

In order to build initial situation on development area,

first step was checking the status of all “active” sprint

projects. Based on analysis, all sprint projects that were

already in “active” development (development has

started, but not finished) remained in the system and

other moved to “waiting” area or canceled the obsolete

one (defined by internal users). The goal is to remove at

least 20% [4] of “active” development requests,

reducing high level of work in progress, as shown in

Figure 4.

Figure 4: Number of active sprint projects

Moreover, the development team (analysts, developers

and testers) are no longer required to provide workload

estimation, thus moving their work to special dedicated

team, which roughly estimate needed workload. Actual

development work is estimated when the resource is

ready to do work. As a result, estimates are never

wasted – the analysis work involved in making the

estimate is used immediately and performed by the

same developer or tester. This classic example of

subordination decision delivering the desired results,

and free their capacity for about 20%.

As it was already mentioned, the constrain resource

(Drum) determines the speed of development activities.

The selection of the buffer in front of development

constrain resource must be defined in order to prevent

his / her work starvation. Instead of trying to make

schedule of each and every resource using sophisticated

tools to prevent starvation of constrain resource, taking

account also Murphy, we can manage development of

development requests in more pragmatic way. We can

release new development requests into development

based on the rate (Rope) that constrain resource (Drum)

can consume, while at the same time protecting it from

starvation (buffer - number of development request that

are waiting in front of him / her). For each application,

constrain development resource is defined (selected)

and his / her backlog for 1 month of work defined.

The "rope" ensures that development requests enters the

development process at a rate that is synchronized with

the capacity of the constrain resource. Consequently, the

number of (development) requests on non-constrain

resource is regulated - not to overload the constrain

resource. Additional development requests remain

outside the development process (in waiting area) until

constrain resource is “free”. The buffer shows the

number of (development) requests that are waiting to be

done by constrain resource and provides insurance that

there is always enough work to. Monitoring the status of

buffer (number of request) will enable quick reaction of

possible starvation of constrain resource, due to

disruption caused by "last minute" changes in

development tasks or Murphy. Also ensures integrity of

the scheduled work - all none-constrain resources have

excess capacity so they will be able to fulfill the

possible gaps in buffer.

Figure 5: Example of Fever Chart for sprint projects

In software development process it is important to know

which development requests needs to be done first. It

should be clarified the difference between rank for

releasing new development requests into the

development process and priority of development work.

The release of new development request is done based

on the business related Key Performance Indicators,

workload (cost) and resource availability, especially

constrain resources. The development priority is based

on the committed deadline, thus protecting the cost and

scope of development requests. In order to be able

UR023496

MAR023489

MAR023481

UR023476

UR023466

UR023466

UR023464

UR023463

UR023458
UR023453

MAR023442

MAR023433

MAR023428

UR023425UR023424

UR023394

MAR023363

UR023339

UR023327

MAR023303

MAR023302

UR023299
UR023296

MAR023302
UR023299

UR023296

UR023294

MAR023182

UR023179

UR023154

MAR023135

UR023132

UR023126

UR023043

UR023030

UR023021

UR022981

UR022975

UR022953

UR022879

UR022821

UR022580

UR022579

UR022425

UR022425

UR022395

UR022363
UR022194

UR021936

UR021547

UR021119

UR020888

UR020737

UR016672

UR016413

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 S

D
 B

u
ff

e
r

U
se

d

% Complete

Multiproject Schedule Fever Chart

51

defining work priority, the Fewer Chart was used, as

shown in Figure 5.

The Fewer Chart show work in progress in linear

relationship based on the development phase and its

estimated / committed deadline. The "X" axis represents

the phase of development, mapped into the %, while the

"Y" axis represents the time "buffer" (how much time in

% is still left to fulfill the requested / committed

deadline of development request). The % is calculated

based on the approved date, requested / committed

deadline of particular development request and current

date.

In the example in Figure 55, it can be seen many sprint

projects in "red", indicating that are already late in

respect of defined deadline. As the main goal is to

deliver sprint projects on time (thus protecting scope

and cost), the need to start working on sprint projects

that are in the "red" area is identified, while monitoring

the "yellow" and "green" ones.

Figure 6: Number of active sprint projects

The reasons for delays must be identified and collected

as a basis for further analysis and improvement, e.g.,

Pareto diagram [6], as shown in Figure 46.

4 Results after 12 months

The productivity or throughput has risen steadily

throughout the past year thus decreasing lead-time for

development request from 37 working days to 21

working days – 40% improvement.

Figure 7: Results after 12 months

There is still high dispersion of lead time, ranging from

low end of 1 day to high end of 109 days. This indicates

that there is still too much work in progress based on the

capacity of development team (reduced for 20%

compared to last year), which needs to be addressed in

the near future.

As can be seen in Figure 7, the reduction of work in

progress, from 237 active sprint projects to 111, was

done in one year. This resulted in more than 40 %

reduction of “inventory” and improving investment life

cycle (quicker amortization of developed requests).

5 Conclusion

In today’s constrain environment where there is

constant pressure "to do more with existing resources",

the TOC application tools and techniques can be used to

address these needs. The basic philosophy of TOC and

their five focusing steps can be applied in software

development area. As the main constrain of

development process are human resources, the proposed

solutions are focused on identifying them, exploit them

and subordinate all others to prevent starvation of

constrain resources. Several principles can be used in

software development process, like building “central

warehouse” of all development requests, implementing

Drum-Buffer-Rope solution for improved and stable

delivery rates, “replenishment” and “inventory control”,

Fever Chart and Pareto diagram to improve

performance of resources involved and to provide

Process Of On-Going Improvements.

Finally, the example presented in this document shows

that productivity of (software) development team in not

related to the development tools but to the management,

planning, scheduling and queuing of development tasks.

Without adding resources or changing any of the

development tools, it was possible to decrease lead-time

of sprint projects by more than 40% (improve

productivity), with 20% less resources.

References

[1] Eliyahu M. Goldratt, Jeff Cox. The Goal: A Process of

Ongoing Improvement, North River Press, 2004

[2] Lisa J. Scheinkopf. Thinking for a Change Putting the

TOC Thinking Processes to Use, CRC Press LLC, 1999

[3] James F Cox III, John Schleier. Theory of Constraints

Handbook, McGraw-Hill Professional, 2010

[4] Mark Woeppel. Projects in Less Time, TOCICO 2009

Conference presentation

[6] Tomaž Aljaž, Lidija Grmek Zupanc, Branka Jarc

Kovačič, Gabrijela Krajnc, Mateja Demšar. Kako s

pomočjo Teorije omejitev narediti več a delati manj,

Dnevi slovenske informatike, april, 2014

0%

5%

10%

15%

20%

25%

30%

R
e
l.
 F

re
k
.

Pareto Diagram

