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Abstract 

A one-dimensional fluid model is presented and used for 
the analysis of the potential formation in front of a 
negative planar electrode immersed in magnetized 
plasma. The Bohm criterion and the floating condition 
are derived and used to determine the sheath thickness 
and the sheath potential drop. With increasing angle of 
magnetic field lines with respect to the electrode surface 
the floating potential, the sheath edge potential and the 
sheath potential drop all increase, while the sheath 
thickness has a minimum. 
 

1 Introduction  

Problem of the sheath formation in front of a 
negative electrode immersed in magnetized plasma is an 
important one and has attracted a lot of attention. The 
pioneering works of Chodura [1], Riemann [2,3], 
Stangeby [4] and some others [5,6] have been extended 
and revisited in many directions. In this work attention 
is focused to the effect of ion temperature and magnetic 
field angle to the floating potential of a planar electrode 
immersed in plasma where magnetic field lines form an 
arbitrary angle with the electrode surface. The study is 
aimed at a fusion application. The scrape-off layer of a 
tokamak, for example has low density plasma in strong 
magnetic fields. Further, the angle of incidence of the 
magnetic field lines onto the divertor spans nearly the 
whole range from perpendicular to parallel. In the next 
section a one-dimensional fluid model is described. In 
section 3 results of the model are presented and finally 
some conclusions are given.  

 

2 Model 

The ions are assumed to obey the continuity 
equation and equation of motion: 
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Here mi is the ion mass, t is time, ui is the ion fluid 
velocity, ni is the ion density, e0 is the elementary 
charge, E is electric field, B is magnetic field, pi is the 
ion pressure, Si is the source term and Ai is the collision 
term. Detailed descriptions of elastic collisions in fluid 
models can be found in e. g. [7]. In this work we simply 
take it to be proportional to ion fluid velocity ui:  

 0 .i i im n  A u   (3) 

As for the source term Si it is assumed that the 
predominant ionization mechanism is ionizing collisions 
of electrons and neutral atoms. The electrons are 
assumed to be Boltzmann distributed: 
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The source term is therefore given by: 
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Here k is the Boltzmann constant, Te is the electron 
temperature,  is the frequency of elastic collisions,  is 
average time between two consecutive ionizing 
collisions between electron and a neutral atom and n0 is 
the plasma density in the plasma region which is not 
perturbed by the electrode – this means beyond the pre-
sheath. The potential  is determined by the Poisson 
equation: 
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Here 0 is the permittivity of the free space.  
Furthermore it is assumed that the following equation of 
state relates the ion pressure, pi, density ni and 
temperature Ti:  

 .i i ip n kT   (7) 

Here  is the polytropic coefficient. Our model is 
isothermal so the ion temperature is assumed to be 
constant everywhere and therefore  = 1. Our model is 
one-dimensional. The x axis is assumed to be 
perpendicular to the electrode. The gradient and Laplace 
operators are replaced by derivatives over x 
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