
ERK'2014, Portorož, B:3-6 3

1

The Broker Solution Example of Domain Specific Languages

Orchestration Framework

Branko Perisic
1
, Ana Perisic

2
, Marko Lazic

3

1
 Faculty of Technical Science, University of Novi Sad, Serbia

1
perisic@uns.ac.rs,

2
arhitektum@windowslive.com,

3
arhitektura@live.com,

Abstract:

 Developing Domain Specific Languages faces with

several challenging demands concerning problem

domain/s and solution domain/s. Considering the

recent explosion of Domain Specific Languages

development it is obvious that certain problem domains

are well covered with usable DSLs while others are in

their infancy. Taking into the consideration the inherent

complexity of underlining problem domains there are

some recent researches targeting the federation or

orchestration of several related DSLs in contrast to

developing a single one. In this article there is the

foundation of DSL Orchestration Framework, based on

Broker Architectural Pattern, presented with respect to

Architectural Design and Urban Planning Problem

Domains.

1 Introduction

A general approach to problems solving, concerning

engineering or reengineering something, addresses the

following three interdependent domains: Problem

Domain, Solution Domain and Execution Domain. A

Domain is often understood as a family of systems

exhibiting similar static structure, dynamic behavior

and/or external functionality. According to [1] while

attempting to established a sustainable general solution

the domain experts and software designers are usually

faced with demanding decision making process. This

process addresses the wide variety of concerns like:

exact definition of problem domain, targeted

stakeholder gropes, intellectual clarity of fundamental

concepts, the elegance and understandability of

currently dominating methods, techniques and tools, the

structure and behavior of any new tool or methodology

that has to be developed, the efficiency and

effectiveness of purposed solutions etc. According to

[2], Domain Engineering (DE) is a systematic approach

that provides a common core architectural framework

supporting this challenging decision making process.

Designing something requires the ultimate understand

of what a particular stakeholder wants, concerning that a

sustainable solution emerges when: the expectations,

support and real behavior of the created artifacts are

compliant or suitably well aligned. The fundamental

question is how one can acquire enough domain

knowledge in order to formulate operationally usable

abstractions. According to [3], the creation of domain

mental model, that relies on empathy with a domain

experts, may be a suitable way to gain the mutual

understanding among domain experts and software

engineers. Empathy with a person is distinct from

studying how a person “uses” something, and extends

to knowing what the person “wants to accomplish”

regardless of whether he/she has or is aware of the thing

that is being designed.

In this article we are focused on three crosscutting

domains that emerge from the history of Civil

Engineering (CE) that is a potentially unlimited origin

of knowledge concerning the relationships established

between humans and nature. The role of Architectural

Design (AD) and Urban Planning (UP), based upon

prescribed principles and doctrines, influenced by the

systematic education and technology impacts, opens a

completely new paradigm concerning the space and

natural environment. Construction Industry (CI),

although tightly coupled with the AD and UP domains,

exhibits its routine mainly through the transition phase.

2 The Software Engineering Domain

Aspects and DSL paradigm

Generally speaking, the history of software

development is a history of raising the level of

abstraction and the level of reusability. According to

[4], raising the level of abstraction changes the platform

on which each layer depends. In our opinion it is the

main motivation factor that, combined with the

reusability, may aid raising the domain experts

efficiency and effectiveness. The recent explosion of

Domain Specific Languages development has

established a challenging target for novel “silver bullet”

that drives the majority of current Model Driven

Engineering researches. Certain problem domains are

well covered with usable DSLs while others are in their

infancy.

According to [5], DSLs have been used quite

successfully in computer science already to build

intuitive user interfaces that are understandable by non-

IT experts but, until now they have not been adequately

applied to the areas of Architectural Design and Urban

Planning. The authors of [5] consider that article as the

first step towards supporting the participatory, bottom

up, approach to urban planning, formulating the

intuitive interfaces (i.e. DSLs) as the key factors to its

4

success. However, concrete application of this approach

including a practical meta-model and a common

vocabulary for urban planning DSLs remains a topic for

future researches.

3 The Problem Domain Aspects of DSL

paradigm

According to [6], the primary aim of The Architectural

Design Process is to guarantee that the architecture

artifact is designed in such a way to simultaneously

satisfy different representational, functional, aesthetic,

and emotional needs of organizations and the people

who intend to live or work in it.

The Architectural Design Process has to be well

structured to ensure that stakeholders needs are satisfied

in predefined priority chain order, thus preventing the

case that resulting architecture artifact is the

consequence of random collection of unrelated

decisions.

The authors of [6] introduce the classic model of the

seven steps Architectural Design Process encapsulating

the following phases: Pre-Design (PD); Schematic

Design (SD); Design Development (DD); Construction

Documents (CD); Bidding & Negotiation (BN);

Construction Observation/Contract Administration

(CO/CA) and Supplemental Services (SS).

According to [7] Urban Design is the art of creating and

shaping cities, towns and neighborhoods that

holistically encompasses the disciplines of urban

planning, architecture and landscape architecture in

order to manage and transform the interactions of

different aspects of urban life into a physical, usable and

sustainable form.

Considering [8], urban spaces consist of a complex

collection of: buildings, parcels, blocks and

neighborhoods interconnected by streets. They are

particularly difficult to model because of the large scale,

ranging from few to several hundreds of square

kilometers, and the underlying structure determined by

a very large number of variables needed to describe: the

land policies, market behavior, transportation

infrastructure, governmental plans and population

changes, that are hard to quantify and usually fuzzy in

their nature.

Accurately modeling of the structure and the behavior

of urban space is essential in spite of the fact that

change processes are, from the point of view of

information technology propulsion, very slow. On the

other hand, considering the building utilization and

spatial interactions, there are much more rapid changes

that have to be encountered. That’s why the authors of

[8] state that it is essential for a rational approach to

Urban Policy Process Management to rely on dynamic

instead of static equilibrium models.

4 The Solution Domain - The DSL

Orchestration Framework model

In order to formulate the Broker Based Orchestrator

Framework model we have referenced the leading

principles and ideas in the field of language driven

software engineering and domain specific modeling

paradigm. The traditional approach to DSL foundation

[9],[10],[11] and establishes well known macro pattern

or the methodology framework that guides the

developers through the unfriendly world of DSL

specification and development. Paul Hudak in [12]

describes domain-specific languages (DSLs) as “small

programming languages tailored for a particular

application domain” consistently referring to the

families of specific, similar problems suitable for

linguistic description. As such, DSLs can be viewed as

sets of general, all-encompassing solutions for problem

domains. The traditional approaches focuses on

Language and Ontology development as the main

limiting and frustrating aspects mainly because of the

lack of open-minded experts that posses the equal

knowledge of problem domain, the domain of language

construction and software engineering domain. From

our opinion only team based work upon project based

learning approach may create an synergic environment

for complex problem domains handling.

On the other hand, according to [13], Domain Specific

Modeling has been widely applied to provide dedicated

tools to domain experts that better support the

transformation of model to working product. According

to [14], from embedded system design to enterprise

architecture modeling, any Domain Expert faces the

same situation: multiplicity of views; multiplicity of

concerns; multiplicity of models and heterogeneity of

modeling artifacts.

This raises the importance of standardization and

interoperability on the artifact level (as through

CityGML or BIM formalisms). The longevity, ease of

learning and implementation are the most important

characteristic of any paradigm or a particular tool-set.

Domain experts do not wish to spend the whole life in

order to gain a suitable level of expertise, or to

dramatically change the gained daily routine while

running for some promising product release. The effort

needed to create a DSL with all accompanied tools is

now a day significantly lower than ten years ago. It is

particularly approved by the recent Language

Workbenches solutions appearance like: Enso, Mas,

SugarJ, Whole Platform, MPS, Onion, MataEdit+,

Spoofax, Rascal, Xtext., that were compared in [15],

Accelo [16], or SLEWorks described in [17] and [18],

Sirius [15] and Sirius implementation described in [19].

According to [20], the multiple DSLs approach is

particularly useful when dealing with diverse domains,

as well as in situations where different domain experts

need to work on a unified artifact.

5

The Building Information Management (BIM) paradigm

is considered by the authors of [21] and [20] as the

challenging while attempting to design an workflow

fashion framework enabling the different domain

experts to modify or analyze a model during its

inception phase in opposition to the serialized approach

of moving drawings from one group the next only after

their completion.

Our experience with the related work analysis shows

that the majority of researchers focus on an narrow

domain that is justifiable but may lead to limited level

of utilization making the effort hard to justify.

The state of the art of AD, UP and CE exhibits a little

documented experiences with DSLs orchestration

frameworks, which makes our approach a challenging

one. Being conscious of the embedded complexity, in

this article, we have suggested the Extensibility and the

Orchestration of DSLs as a paradigm for sustainable

DSL Framework development

 In software engineering Extensibility is a system design

principle that takes into the account the future growth of

system under development. For the Orchestration of

DSLs we suggest The Broker Architecture Pattern

represented by an Architecture diagram shown in Figure

1.

Figure 1. DSL Orchestrator Architecture Model based

on Broker Pattern

The DSL Broker Service is used in order to structure

independent DSLs (Concrete DSL) that are modeled

like autonomous distributed software systems and

support the cooperative work of different Domain

Experts clustered over shared project artifacts. Concrete

DSLs interact with Broker by remote service

invocations implemented through the DSL Orchestrator

Interface, specified by DSL Orchestrator. A DSL

Broker Service component is responsible for

coordinating communication, such as: forwarding

requests, disseminating created artifacts and handling

exceptions.

The extendibility is supported through autonomous

implementation of DSL Orchestrator Interface by a DSL

instance that joins the Extensible DSL Pool.

DSL Orchestrator Database stores all the relevant

information concerning registered DSLs instances and

their mediation.

The Orchestrator Component Pool hosts the

Orchestrator supporting services dedicated to:

Administration, Parameterization and Reporting.

The Orchestrator Component Pool itself is freely

extendable based on the Orchestrator Component

Interface implementation.

5 Conclusion and Further Research

Directions

Considering the Language Workbench researches it is

obvious that the creation of small languages today is

fare better supported than just several years ago. This

does not minimize the disciplined way of DSL

development, but makes it possible to develop the

family of closely related DSLs that may be orchestrated

in order to raise the level of abstraction when

orchestrating complex engineering domains.

Developing Domain Specific Languages faces with

several challenging demands concerning problem

domain and solution domain..

Taking into the consideration the underlining problem

domain complexity there are some recent researches

targeting the federation or orchestration of several

related DSLs in contrast to developing a single one.

In this article there is the foundation of Broker Based

DSL Orchestrator presented. The extensibility of DSLs

is introduced and discussed from community driven

development perspective as well as the role of

interoperability and synergic approach to multiple DSLs

orchestration.

The directions of further researches mainly concentrates

on the following:

 the operational verification of stated Broker

based Orchestration Framework;

 the development of meta language

specification framework that may coordinate

different Language Workbenches in order to

compare their effectiveness concerning the

ease and speed of DSLs development

concerning selected abstract levels of

Architectural Design and Urban Planning

domains; and

6

Literature

[1] Lapets, A.: Algebraic Semantics of Domain-Specific

Languages, (2006) [Online]. Available: http://cs-
people.bu.edu/lapets/resource/algsemdsls.pdf (current Jun
2014)

[2] Fawcett, P.: The Architecture Design Notebook,
Architectural Press An imprint of Elsevier Linacre
House, Oxford, Burlington. (2003)

[3] Young I.: Mental Models: Aligning Design Strategy with
Human Behavior. Rosenfeld Media, New York. (2008)

[4] Bryant, B. R., Gray, J., Mernik, M., Clarke, P. J., France,
R. B., Karsai, G.: Challenges and Directions in
Formalizing the Semantics of Modeling Languages.
ComSIS Vol. 8, No. 2, 225-253. (2011)

[5] Kramer, M., Ludlow D., Khan, Z.: Domain-specific
languages for agile urban policy modelling, Proceedings
27th European Conference on Modeling and Simulation,
May 2013, Norway. (2013)

[6] Werner, S., Long, P.: Cognition Meets Le Corbusier –
Cognitive Principles of Architectural Design. In: Freksa,
C. et al. (eds.): Spatial Cognition III, Springer-Verlag
Berlin Heidelberg, 112–126. (2003)

[7] Patsucha, S., Glodney, B., Carol, C., Nameth, J.,
Sampson, S.: Urban Design Principles, Gensler, City of
Los Angeles,
(2011).[Online].Available:http://www.urbandesignla.com
/resources/docs/DesigningAHealthyLA/hi/DesigningAHe
althyLA.pdf (current March 2014)

[8] Simmonds, D., Waddell, P., Wegener, M.: Equilibrium
versus dynamics in urban modeling, Enviroment and
Planning B: Planning and Design, Vol 40, No. 6. (2011).

[9] Mernik M., Heering J., Sloane A. M.: When and how to
develop domain-specific languages. ACM Computing
Surveys, Vol. 37, No. 4, 316–344. (2005)

[10] Sprinkle J., Mernik M., Tolvanen J. P., Spinellis, D.:
Guest Editors' Introduction,What Kinds of Nails Need a
Domain-Specific Hammer? IEEE Software, Vol. 26, No.
4, 15-18. (2009)

[11] Kosar T., Oliveira N., Mernik M., Varanda Pereira M. J.,
Črepinšek, M., da Cruz D., Henriques P. R.: Comparing
General-Purpose and Domain-Specific Languages: An
Empirical Study. Computer Science and Information
Systems, Vol. 7, No. 2, 247-264. (2010)

[12] Hudak, P.: Modular domain specific languages and tools.
Proceedings: Fifth International Conference on Software
Reuse, IEEE Computer Society Press. pp. 134–142.
(1998).

[13] Völter M., Visser., E.: Language extension and
composition with language workbenches., In:
Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion. ACM. 2010, pp.
301-304. (2010)

[14] Guychard, C., Guerin, S., Koudri, A., Beugnard, A.,
Dagnat, F.: Conceptual interoperability through Models
Federation, Semantic Information Federation
Community Workshop. (2013)

[15] Sirius Documentation, [Online]. Available:
http://www.eclipse.org/sirius/doc/ (current April 2014)

[16] Acceleo. [Online]. Available:
http://www.eclipse.org/acceleo/, (current April 2014).

[17] Dejanović I., Perišić, B., Milosavljević G.: MoRP Meta-
metamodel: Towards a Foundation of SLEWorks
Language Workbench, The 2nd International
Conference on Information Society Technology (ICIST
2012), Kopaonik, Serbia, pp. 36-40. (2012)

[18] Dejanović, I., Milosavljević, G., Perišić, B., Vasiljević,
I., Filipović, M.: Explicite Support for Languages and
Mograms in the SLEWorks Language Workbench, The
3nd International Conference on Information Society
Technology (ICIST 2013), Kopaonik, Serbia, pp. 167-
172. (2013)

[19] Vujović, V., Maksimović, M., Perišić, B., Milošević V.:
A Graphical Editor for RESTfull Sensor Web Networks
Modeling, SACI2014, IEEE 9th International
Symposium on Applied Computational Intelligence and
Informatics, Temisovar, Romania, (2014)

[20] Northrop, L., Clements, P., Bachmann, F., Bergey, J.,
Chastek, G., Cohen, S., Donohoe, P., O’Brien, L.: A
framework for software product line practice, version
5.0. (2007) [Online]. Available:
http://www.sei.cmu.edu/productlines/frame_report/
(current Jun 2014)

[21] Kosar T., Oliveira N., Mernik M., Varanda Pereira M. J.,
Črepinšek, M., da Cruz D., Henriques P. R.: Comparing
General-Purpose and Domain-Specific Languages: An
Empirical Study. Computer Science and Information
Systems, Vol. 7, No. 2, 247-264. (2010)

