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Abstract
Crowd monitoring in mass events is a highly important tech-

nology to support the safety of event attending persons.

Proposed methods are often limited to one specific viewing

condition and have to be retrained or even redesigned if the

viewing angle is changing which is particularly mandatory

in airborne based applications. We present a novel frame-

work for highly view invariant person counting and crowd

density estimation from single airborne or terrestrial im-

ages based on a generalized human head detector and a

regression based density estimate. Employing manually la-

beled reference data, we present detailed accuracy analyses

for object detection and for density based person counting.

The resulting human counter demonstrates a mean error of

5% over three different data sets. At the same time it thus

provides a highly efficient quality indicator for benchmark-

ing security critical decision support services.

1 Introduction

Counting the number of people in single images or in videos

taken on large scale events, like music festivals or sport

events, is very important to prevent escalations and human

casualties [4, 8]. Moreover crowd counting is used for var-

ious surveillance purposes, see e.g. [1]. Our envisioned

system gathers images from an airborne platform, like an

UAV, or an airborne digital camera (e.g. UltraCam [5]). In

general such cameras are capturing individual images rather

than videos such that our workflow does not rely on motion

estimates between adjacent images. In contrast, we propose

an object detector custom tailored for people counting that

can handle different viewing conditions. The human den-

sity is then extracted from the object detection scores which

also yields the number of people in the given image. The

density estimate itself gives a lot of information as regions

of highly crowded people can become most critical when

we think of disasters like at Roskilde Festival in 2000, or

in Duisburg at Love Parade in 2010. Such information can

then be used to alert security staff who then triggers appro-

priate actions, like opening or closing a gate or restricting

the access for following people in a festival scenario. Since

recent approaches, like [9, 8], can only handle one fixed

viewing angle we want to design a method that gets rid of

this constraint and yields appropriate results independent of

the viewing direction. Thus, the main point in this paper is

that we train one object detection model and one density es-

timation model using data from different data sets captured

under varying view angles. Therefore, our methodology

can handle images from different views without the need of

constant retraining, with an average relative counting error

below 5% w.r.t. the true people count.

Our Contribution. Our main contribution in this work is

twofold: First, we introduce an object detector for person

detection from remote bird’s-eye views that is rather simple

and thus fast, nonetheless highly viewpoint invariant. Sec-

ond, we show that this detector can estimate crowd densi-

ties in a highly accurate manner as well as the people count

from above. Both estimators are jointly trained on three

different data sets showing the ability of generalization, i.e.

we learn one model that works for all data sets. The accu-

racy of both steps is evaluated using appropriate statistical

techniques.

2 State of the art

Some principles for crowd monitoring and person count-

ing have been published. For example, [1] count people in

an outdoor scenario based on a fixed mounted static video

camera using a motion segmentation followed by a feature

extraction, that serves as input for a Gaussian regression

model. The main drawback w.r.t. our application is the

prior motion segmentation. Such a system can only work on

video data and can only identify moving people, therefore

all standing people are not counted. In addition, other mov-

ing objects like cars or pets will also appear in the motion

segmentation. The work of [9] deals with airborne nadir

looking images. This very interesting approach is similar

to our methodology in terms that it extracts local features

and uses them to estimate the crowd density. The authors

also include a feature selection step to reject local features,

which potentially are not corresponding to persons. The

density itself is extracted using a kernel density estimate

based on the feature occurrence. The number of individu-
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als is spatially aggregated also using the feature responses.

In the following we discuss related work in particular for

object detection, object counting and density estimation.

Object Detection. A standard approach for detecting an

object of a known category from single images is to ex-

haustively analyze the content of image patches at all im-

age positions, and at multiple scales (see e.g. [2, 7, 3, 10]).

Each extracted patch is classified according to its local ap-

pearance and associated with a detection score. Some of

these frameworks yield very good detections on the cost of

heavy computational load (especially [2] and [3]).

Object Counting and Density Estimation. One basic idea

is to detect each individual object instance in the image

and count their number. However, in computer vision ob-

ject detection is far from being solved and the detection

is a harder problem than counting alone. Huge problems

arise when objects are overlapping and occlude each other.

Thus, the counting by density estimation principle was in-

troduced. The main concept is to estimate an object density

function, whose integral over any image region gives the

count of objects within this region [6]. In the learning step

the proposed methods employ the ground truth location of

objects and the learning can be posed as a convex linear or

quadratic program. An additional benefit of the method is

that after learning the density function can be estimated by

simple multiplication of the individual features with learned

weights and is therefore very efficient.

3 Methods

Workflow. The main idea is to calculate object detection

scores from the given images and relate them to the human

density by machine learning techniques. As object detector

we propose a customized version of the histogram of ori-

ented gradients (HoGs) detector. The resulting scores are

discretized such that the density estimation method is able

to learn a weight for each of the scores. Thus, after learning

the density function can be calculated by simple multipli-

cations. In addition, the density estimate is a real density

function, meaning that the integral over the density yields

the object count (therefore, the integral over a subregion

holds the number of objects in this particular region). Ex-

ample images, the object detection scores and the density

estimates are visualized in Figure 2.

Object Detection. To enable a view invariant person de-

tection we stick to detecting human heads in images, since

those are visible in nadir views as well as in side views.

Our proposed object detector is based on the construction

of a useful descriptor for an image patch. Those descriptors

are then used to train a support vector machine (SVM) that

is later employed to calculate a confidence score for each

location in the image. As basic descriptor we use the well

known HoG descriptor [2] which describes an image patch

by the occurrence and magnitude of local gradients. We use

the HoG variant reported in [3], since it yields slightly bet-

ter object detection results while simultaneously having a

lower dimensional descriptor compared to the original vari-

ant in [2]. For each image patch this implementation re-

sults in a vector of dimension 4 + 3 ∗ o with o being the

number of orientations within the gradient histogram. Af-

ter initial tests we use 9 orientations which results in a 31-

dimensional vector for one HoG cell. The size of a HoG

cell is set to 15 × 15 pixels. As one cell would result in a

weak descriptor we use 2 × 2 HoG cells centered on our

object and stack those 4 descriptors which finally yield a

124-dimensional feature vector. It can be considered as a

rather low-dimensional description especially when com-

pared to the original HoG-based pedestrian descriptor of

[2] with 3780 dimensions. Figure 1 sketches the main con-

cept of our descriptor. Shown are a patch holding a person,

the gradient magnitude with the spatial arrangement of the

4 HoG cells and one gradient descriptor.

→ → → d∈R
124

Figure 1: Sketch of the proposed object descriptor. Four HoGs cells are

stacked to gather a 124-dimensional feature vector.

For learning we need positive examples extracted from

manually labeled objects and negative examples (not hold-

ing a person). The positive descriptors are calculated for

our manually labeled objects, where we are also incorporat-

ing a vertically flipped image to double the number of train-

ing data. For each image the same number of negative sam-

ples are gathered randomly from the image. To avoid that

a negative sample also holds a person, a distance transform

is calculated from the positive locations. Then a negative

sample must have a distance larger than 1% of the image

diagonal (i.e. 18 pixel for an image of size 1440 × 1080).
The descriptors of positive and negative samples are em-

ployed to train an SVM, where the resulting model is later

used for object detection.

Object Counting and Density Estimation. For counting

objects and estimating their density we employ the method

in [6]. This method takes densely extracted confidences

from our detector and learns the density estimate via a re-

gression to a ground truth density. Thus, each pixel has

to be described by a feature vector of the following form

f = (0, 0, . . . , 0, 1, 0, . . . , 0), which is 1 at the dimension

of the corresponding discretized feature and otherwise 0.

For density learning our confidences have to be discretized,

which is done by setting the minimal value to −2 and the

maximal value to +4. These bounds are used to scale the

confidences to [0, 255] ∈ N. Now, each of the possible 256

values define a feature vector, as discussed above, which

is 1 at the position of the confidence value. Therefore,

it yields 256 individual features. The training itself min-
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imizes the regularized Maximum Excess over SubArrays

(MESA) distance (cf. [6]) where we use two distinct ap-

proaches to solve the resulting linear or quadratic equa-

tion system, namely the L1 and the Tikhonov regulariza-

tion (i.e. minx ||Ax− b|| orminx ||Ax− b||+||(x′Γx)/2||
with ||x ≥ 0|| and Tikhonov matrix Γ being the identity ma-

trix in our case). All details of this methodology are given

in [6]. The result is a weight for each of the discretized

features and the resulting human density is calculated by

multiplying the according weight with the extracted feature

value. Thus, for each pixel the density function is given and

the sum over all pixels represents the number of objects in

the image, i.e. our person count. Therefore, in the test-

ing phase the discretized features, i.e. our object detection

scores, are extracted for each image and multiplied by the

learned weight vector, directly resulting in the density esti-

mation per pixel and corresponding person count. It should

be noted that this approach introduces virtually no overhead

over feature extraction [6].

4 Results

Test Data. For evaluation of the presented concept videos

from three different scenarios were acquired in HD quality.

Only individual video frames were used to simulate our en-

visioned airborne acquisition. Data from other tests showed

that the images are analogous to images taken by an aerial

platform. Exemplary images are shown in Figure 2. This

Figure shows input images, the object detection score and

the density estimate. The first scenario, referred as Hub-

steiger, originates from a fire drill where we positioned a

AXIS P3364 camera on a picker at approximate 25 meters

above ground. The images of this camera contain fish eye

distortion and persons are observed under a slightly oblique

look angle. The second one, referred as Lakeside, originates

from a music festival in Styria, Austria. A Canon HV30

video camera was mounted on a tower (approximately 30

meters above ground). Here the crowd is sensed under a

flat look angle of about 14◦, such that the whole silhouettes
of persons are visible. The third one, referred as Towercam,

originates from the same fire drill as Hubsteiger but here

a NOKIA Lumia 710 mobile phone was mounted on the

top of a building at about 40 meters to capture the crowd

in nadir direction. Finally, as we want to show the ability

of generalization we constructed a combined data set that

contains all images from data set 1 to 3. Even though the

presented sequences are not taken from an airborne plat-

form, the images have very similar properties as expected

from UAVs or other sensing devices. Therefore, the pre-

sented workflow will also work on airborne imagery. We

manually labeled 170 images to get the ground truth per-

son counts for training and later for the testing phase (over-

all more than 43000 persons were annotated, cf. Table 1).

From the standard deviation of the people count in Table 1

it can be seen that DS1 Hubsteiger is the most difficult data

set, as the number of people changes most dramatically.

ID Number of Persons

images total min max mean std

DS1: Hubsteiger 45 11508 15 317 255.7 84.7

DS2: Lakeside 80 22300 249 319 278.8 13.4

DS3: Towercam 45 9468 144 263 210.4 33.4

ALL 170 43276 15 319 254.6 55.1

Table 1: Manually labeled persons in the three data sets together with

their statistics. This information serves as ground truth for training and for

testing.

Object Detection. To evaluate the object detection accu-

racy we extracted descriptors from positive and negative

samples, for each data set and for the combined set (note,

that the learning of the combined set involves huge amounts

of data, i.e. more than 173000 124-dimensional vectors

holding positive and negative samples). Then, we learned

SVM models and calculated the average accuracy by a 5-

fold cross validation. For each run 4-folds were used to

train the model and 1-fold served for testing. We also com-

pared a linear SVM to a SVM with a radial basis function

(RBF) kernel. For the RBF case we also varied two pa-

rameters γ ∈ [0.5; 1; 2] and c ∈ [2, 4, 8] (with γ being a

parameter of the RBF kernel function for two samples xi

and xj with K(xi, xj) = exp(−γ||xi − xj ||
2) and c being

a regularization parameter). While the linear SVM yields

accuracies from 93% to 97%, the RBF SVM performs bet-

ter with 98.5% to 99.6% (best results were achieved with

γ = 2 and c = 4). Since the RBF SVM always achieves

higher accuracies, this kernel was used for the density es-

timation later on. The detector for the combined data set

gives nice results, with an accuracy close to 99% using the

RBF SVM. Therefore, one detecor will be enough to pro-

cess all given data sets. For training the final object detector

we randomly selected 20% of positive and negative samples

from all data sets and trained a RBF SVM with the param-

eters stated above.

Object Counting and Density Estimation. The accuracy

for counting by density estimation of the training and test-

ing process is listed in Table 2. We first used all avail-

able image to train the density estimation model. Then

we took every second image, then every fourth and so on,

while the testing of the model was performed on the re-

maining images. It can be observed that the accuracy of

training increases with a lower number of training samples.

This makes sense, as the model adapts more and more to

the specific samples but looses its ability for generalization

(i.e. the well known over-fitting problem). That is why

the accuracy of testing is decreasing with a lower number

of training samples. Thus, we can learn that about 20 im-

ages are sufficient for training our system. We can also ob-

serve that the regularization (L1 or Tikhonov) only has a

small effect on the testing results. Overall, we can state

that an average error of human counts of about 12 can be

reached, which correspond to a relative error below 5% (to

be precise 4.7%). Figure 2 visualizes some density esti-
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mates and Figure 3 shows the results when using every 4th

image for learning. Shown are the estimated human count

for the two regularizations given in blue and green color,

together with the manually measured counts shown as red

dots. The dashed black lines show the separation between

the three data sets. Overall, it can be seen that the esti-

mation is quite close to the ground truth data. Especially

for data set 1 Hubsteiger our framework is also able to get

good estimates when a lower number of people populates

the scene (e.g. when people are entering the area in the first

few images and when they leave from image number 40 to

45; cf. Figure 3).

Hubsteiger Lakeside Towercam
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Figure 2: Exemplary results for the three different data sets. The top row

shows a representative input image for each data set. Middle row gives

the densely extracted object detection scores which are in the range from

-2 to +4. Bottom row visualizes the calculated human density functions

scaled from 0.0 (blue) to 0.2 (red) in persons/pixel. The true number of

persons in the images and the estimated count using the L1 regularization

are stated below.

Figure 3: Person counting: Estimated person count using L1 regulariza-

tion (blue) and Tikhonov regularization (green). The red dots indicate the

manually measured ground truth. The vertical lines show the transition

between the data sets 1, 2 and 3.

5 Conclusion

In this work we presented a method for highly view invari-

ant people counting and crowd density estimation from sin-

gle airborne or terrestrial images. We introduced a gen-

eralized human head detector, whose detection scores can

successfully be used to derive a crowd density estimate and

from this the person count. Overall, the estimated human

counts were highly accurate and resulted in 5% average

step training testing

# L1 Tikhonov # L1 Tikhonov

1 170 10.3 10.7 0 - -

2 85 10.0 10.9 85 11.3 11.0

4 43 8.7 9.6 127 11.2 11.3

8 22 7.1 7.4 148 12.2 12.0

16 11 6.2 5.3 159 13.1 13.2

32 6 4.7 3.8 164 13.2 12.9

64 3 2.0 2.4 167 14.9 13.2

128 2 1.2 0.5 168 37.2 23.1

Table 2: Accuracy of density learning and testing. Given are the average

errors of the total human count over the training and test images, for two

regularization options and different training and test set splits. A count

error of 10 represents an relative error of 4%.

counting error for three test data sets, which were acquired

with different cameras under varying viewing angles. The

proposed framework is therefore highly important as well

as promising for the application in airborne security appli-

cations. In future the framework will be enhanced to also

allow scale independent processing. The simplest solution

would be to rescale any image to a common fixed scale

employing the meta-information gathered from the intrin-

sic camera parameters, GPS and IMU.
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