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Abstract
This paper presents a preliminary evaluation of a

compositional hierarchical model for music informa-
tion retrieval in terms of its robustness to noise. The
model has been previously introduced and evaluated
for automated chord estimation and multiple funda-
mental estimation tasks. The model claims to pro-
vide mechanisms aiding the model to perform well
on noisy data. We evaluated the model’s robust-
ness to noise by performing a set of tests by adding
the white and pink noise to the audio data and re-
evaluating the model for the automated chord esti-
mation (ACE) task. The paper describes the experi-
ment and shows the model’s ability of producing rel-
evant features in suboptimal conditions, resulting in
a graceful degradation of the classification accuracy
for the ACE task.

1 Introduction

The field of music information retrieval (MIR) only
formally exists for a good decade; however, it has
reached a significant expansion in tasks and solutions
focusing on a variety of music-oriented aspects [2].
These aspects include extraction of high-level mu-
sic descriptors from music, such as melody, harmony
and rhythm, as well as highly perceptual or sub-
jective tasks involving mood estimation and genre
recognition. None of these tasks has reached a state
of perfect solution. Nonetheless, new approaches are
constantly raising the level of the state-of-the-art re-
sults.

The deep learning architectures have been known
for some time, yet only recently have such ap-
proaches been introduced into the MIR field, with its
most prominent representative model, the deep belief
networks (DBNs). The DBNs represent a single com-
putational model which can and has been applied to
a variety of tasks. The concept of deep learning has
grown in popularity in the fields of signal processing
[14], audio processing [9] and MIR. Lee [6] presented
one of the first attempts of using deep belief net-
works (DBNs) on audio signals, where convolutional

DBNs were applied to the speaker identification task.
Focusing on music signals, Hamel and Eck [3], eval-
uated DBNs for genre recognition. The DBNs show
great potential for many tasks that involve high-level
feature extraction, such as emotion recognition, since
there is usually no trivial spectral or temporal feature
that could be used to model the high-level represen-
tation in question. Schmidt and Kim [13] showed
promising results by using a DBN for extraction of
emotion-based acoustic features. Overall, recent re-
search has shown great interest and success in us-
ing features learned from music signals, in contrast
to previously used hand-crafted features. There is
a vast expansion of deep learning in MIR to be ex-
pected, as anticipated by Humphrey [4].

This paper focuses on another deep learning ar-
chitecture — a biologically-inspired compositional
hierarchical model for music information retrieval
[11, 12]. The proposed model poses an alternative
to recent deep learning architecture approaches. Its
main difference from the latter is in its transparent
structure, thus allowing representation and interpre-
tation of the signal’s information extracted on dif-
ferent levels. The model has been applied to the
MIR tasks of automated chord estimation and mul-
tiple fundamental frequency estimation. Although
newly introduced, this alternative shows great po-
tential for MIR. We re-evaluate the model for the
task of automated chord estimation by applying sev-
eral scenarios of adding noise to the audio recordings
and comparing the model’s performance. The paper
is structured as follows: the compositional hierarchi-
cal model is presented in Section 2, the experiment
of evaluating the robustness to noise is explained in
Section 3. We elaborate on the results and conclude
the paper in Section 4.

2 Compositional Hierarchical Model

The structure of the model is inspired by work in
computer vision, specifically the hierarchical compo-
sitional model presented by Leonardis and Fidler [7].
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Their model represents objects in images in a hier-
archical manner, structured in layers from simple to
complex image parts. The model is learned from the
statistics of natural images and can be employed as
a robust statistical engine for object categorization
and other computer vision tasks. Since no trivial
transformation between visual and audio signal do-
mains exists, it took significant effort to transform
the model to the MIR domain.

2.1 Structure

The compositional hierarchical model provides a hi-
erarchical representation of the audio signal, from
the signal components on the lowest level, up to in-
dividual musical events on the highest levels. The
model is built on the belief of the signal’s ability of
hierarchical decomposition into atomic blocks, de-
noted as parts. According to their complexity, these
parts can be structured across several layers from
less to the more complex. Parts on higher layers are
expressed as compositions of parts on lower layers —
similarly as a chord is composed of several pitches,
or a pitch represents a composition of several har-
monics. A part can therefore describe individual fre-
quencies in a signal, their combinations, as well as
pitches, chords and temporal patterns, such as chord
progressions.

The first L0 layer of the model corresponds di-
rectly to the time-frequency representation of the
music signal, as parts correspond to individual fre-
quency bins and part activations to their magni-
tudes. Subsequent higher layers {L1..Ln} consist of
compositions of parts on lower layers and thus repre-
sent relative combinations of frequency components
in the signal (Fig 1).

The model is built layer-by-layer in an unsuper-
vised manner from a given data set. While build-
ing a new layer Ln, a set of possible part compo-
sitions is constructed by observing the statistics of
co-occurrences of part activations on the Ln−1 layer.
Frequently co-occurring parts are chosen and com-
bined into new parts. Compositions are denoted as
links between parts in Figure 1. Composition i on
layer Ln can be formally defined as a structure con-
taining parts from a layer below: a central part C,
and a secondary part S. We name the parts form-
ing a composition subparts. A composition can be
defined as:

Pn,i = {Cn−1,j , Sn−1,k, (µn,i, σn,i)}, (1)

where Cn−1,j and Sn−1,k are the central and sec-
ondary subparts from layer n−1, while µn,i and σn,i

define a Gaussian limiting the difference between lo-
cations of subpart activations. A part Pn,i activa-
tion is composed of two values: activation location
LPn,i, which represents the location (frequency) at

which the part is activated, and activation magni-
tude APn,i, which represents the strength of acti-
vation. The location of part’s activation is defined
simply as the location of activation of its central sub-
part:

LPn,i = LCn−1,j . (2)

Thus, central parts of compositions on different lay-
ers propagate their locations upwards through the
hierarchy. The magnitude of activation is defined as:

APn,i = (3)

tanh[G(LCn−1,j − LSn−1,k, µ, σ)

· (ACn−1,j +ASn−1,k)],

where tanh stands for the hyperbolic tangent func-
tion that limits the magnitude to [0,1) and G repre-
sent the Gaussian that limits the difference in loca-
tions of the central part and the subpart according
to µ and σ.

However, in order to avoid excessive redundan-
cies and obtain the more significant compositions, a
greedy part selection algorithm is used, which max-
imises the amount of previous-layer activations cov-
ered by a newly composed part, while minimizing the
number of parts in a layer. In this paper, it is our in-
tention to reproduce the three-layer structure of the
model used for the automated chord estimation task,
described in [12].

When a model is built, it can be used for inference
over any desired data set. Part activations across
all layers of the hierarchy are calculated for each
time-frame of the time-frequency representation of
the analysed music signal. These activations can be
used as audio descriptors for tackling various MIR
tasks. A more thorough explanation of the model’s
structure is also provided in [10].

2.2 Relativity and shareability of parts

We point out the relativity and shareability of parts
as two key differences of the model, when com-
pared to the DBN approach. As shown in Figure
1, one part can be activated at multiple locations.
On L1 layer, parts produce activations for all co-
occurrences of subparts, not defined by their posi-
tion on an absolute spectral scale, but rather by
the offset of locations between co-occurring subparts.
Thus, P2,2 part, with subparts positioned in an off-
set of one octave, is activated on a set of locations
{294Hz, 440Hz} at given time-frame t1. The L0

layer and L1 layer can be thus observed as a fully
connected sub-graph where each pair, consisting of
a L1 and a L0 part are connected. The necessary
condition for each activation in the set of P1,i part
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Figure 1: An abstraction of the compositional hierarchi-
cal model. Parts on the input layer correspond to signal
components in the time-frequency representation. Parts
on higher layers are compositions of lower-layer parts (de-
noted as links in the figure). A part may be contained
in several compositions, e.g. P11 on the first layer is part
of compositions P21, P22 and P2m on the second layer.
Several depictions of the same part (e.g. part instances
P11 and P

′

11) denote several activations of the part on
different locations (all instances of a part on a layer are
marked with the same outlined color). Parts activated in
t1 are shown filled with color.

activations AP1,i at given time-frame are two activa-
tions of L0 parts, co-occurring with the given offset.
Thus, L1 parts are relative by the definition their
activations.

The relativity of parts is retained for higher-layer
parts {L0..LN}. However, the Ln parts connect only
to their composing Ln−1 subparts. The part Pn,i ac-
tivations retain the property of the location which
is propagated through the Cn−1,j subpart’s location
of the activation. Both Cn−1,j and Sn−1,k subparts
may possess a set of activations. The offset of Pn,i

activation provides the eligibility criterion for Pn,i

part activation. The relativity of parts enables the
model to provide a single part representing an ab-
stract high-level concept regardless of its location of
presence in the observed signal. For example, a sin-
gle part can represent a concept of a pitch, moreover,
the same part, activated on two different locations,
may compose a part representing an interval on the
consequent layer.

The feature of the parts’ relativity provides the
possibility of one part covering all present represen-
tations reflecting similar structure, regardless the lo-
cation. The shareability of parts is reflected when

observing the connections between consecutive Ln−1

and Ln layers of the model. Any single Ln−1 part
may form several Ln compositions, thus eliminating
the need of retaining several instances of a single ab-
stract representation for each composition.

3 Evaluation of the model

The experiment was performed using a three-layer
compositional model by exporting the (third) octave-
invariant features, similar to the chroma features.
We evaluated the model on the first two albums
of The Beatles dataset, provided by C. Harte. We
added different amounts of pink and white noise to
the original audio recordings with an intention to ob-
serve the degradation of the classification accuracy
of the automated chord estimation task.

There are several evaluations of approaches when
considering the robustness to noise. Boulanger-Lew-
andowski et al. [1] provided an evaluation to a
set of noise-types with variable signal-to-noise ra-
tio. Lardeur et al. [5] evaluated the possible use of
prior knowledge for robustness by adding the equal-
ization, reverberation and compression effects. No
strict noise-robustness evaluation procedure has yet
become a standard in the MIR field. Nonetheless,
Mauch and Ewert developed [8] an Audio Degra-
dation toolbox (ADT) designed especially for such
evaluation. The ADT offers a variety of audio effects
such as noise, reverberation and other effects resem-
bling real situations. For this preliminary evaluation
we used a subset of the provided toolbox effects for
the experiment and generated noisy audio input us-
ing pink and white noise with SNR between [20, 0]
dB with a step of 5 dB, similar to [1] and others.

We performed the experiment as follows. The hi-
erarchical model was trained on 88 piano key strokes.
For the experiment, we used the albums Please please
me (denoted as Album1 ) and With the Beatles (de-
noted as Album2 ). The audio files of first two albums
were reproduced using both pink and white noise at
given signal-to-noise ratios (total of 280 noisy audio
files and 28 originals). Using the trained hierarchical
model, we produced octave-invariant features for all
audio files, including the originals.

We performed the procedure of classifying the out-
put using a Hidden Markov model (HMM). The
HMM was trained on the clean features, calculated
on the original (noise-free) albums and tested on the
noisy albums exclusively; for example, we trained
the HMM on noise-free Album1 and classified all the
noisy versions of Album2. We repeated the process
by switching the Album2 as the train set and noisy
versions of Album1 for the test set. Figure 2 shows
the graceful degradation of the classification accu-
racy, reflecting the impact of the added pink and
white noise to the data. Moreover, the model seems
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to be less severely affected by the pink noise, com-
pared to the degradation using the white noise.

Figure 2: A graph representing the degradation of the au-
tomated chord estimation task classification accuracy for
the first two albums of the the Beatles compilation. Val-
ues marked with Album1 represent the results of classi-
fying the first album using a HMM learned on the second
album, Album2 represents the results by learning on the
first and testing on the second album. The graph shows
a graceful degradation. The model is more affected by
the white noise than to the pink noise.

4 Conclusion

This paper presented a preliminary evaluation of
the compositional hierarchical model’s robustness to
noise. The models appears to be a valuable alter-
native to other deep architecture approaches. We
further confirmed this hypothesis by evaluating the
model on audio chord estimation task, extending it
to include a variety of different noisy audio data and
observing the output. By the graceful degradation
of the classification accuracy over a set of noise pa-
rameters including two noise types added at various
SNRs, we can conclude the model appears to per-
form excellently in the given conditions. It is yet to
be confirmed this robustness may be a result of the
model’s training set, as shown by [5]. We plan on
performing an extensive evaluation adding a variety
of affects, including the ones described in [5], and
expanding the evaluation to other tasks.
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