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Abstract
We present a keypoint based multiple-view model approach

towards 3D object detection. Our model addresses the short-

comings of other keypoint based detection methods, since

they do not take into account the 3D nature of everyday ob-

jects and thus rely on frontal object occurrences. For each

3D object, a model is learned from multiple view images

of the object. The learned model is used to perform object

detection from an arbitrary viewpoint of the object. The

proposed model is a keypoint based detector with added

filtering mechanisms to ensure a robust object detection.

We evaluate our proposed method on a real world dataset

containing everyday grocery items with changes in illumi-

nation, object viewpoint and position, cluttered scenes and

multiple object instances.

1 Introduction

Object detection has a wide range of applications in spe-

cialized as well as everyday computer vision tasks, like

image retrieval systems [2, 10], everyday object recogni-

tion [6, 4, 9] and automated pick and place systems [7].

However most approaches [6, 9] do not take into account

the 3D nature of everyday objects and thus fall short of per-

forming the detection task under perspective or even dif-

ferent viewpoints of the object from its different sides. We

address this problem by constructing a multiple-view ob-

ject model from different viewpoints of the object. In this

sense, our proposed method requires a minimum number of

images, enough to cover the entire object in order to build

an object model. For the object detection task itself, regu-

lar household items are well suited since these objects of-

ten contain repeated patterns, logos and text which makes

them ideal for keypoint based detection methods. We eval-

uate our method on a challenging real world dataset [4],

containing everyday grocery items in scenes with strong il-

lumination and viewpoint changes, occlusions, clutter, and

examples containing multiple instances of the same object.

The remainder of the paper is structured as follows. In

Section 2 we provide a short description of our proposed

model, followed by the description of the object detection

process in Section 3. Preliminary experiments and results

are described and presented in Section 4. We conclude with

the discussion in Section 5.

2 Model

Assume that a 3D object can be modelled by multiple pla-

nar models, obtained from multiple views of the object M =
{Tj}j=1:Nv

, where Nv corresponds to the number of view-

point images required to cover the entire object.

2.1 Encoding planar templates

A single view, i.e. object face is encoded by a set of key-

points {k
(l)
j }j=1:Nk

and an intensity template Ij of size

n × n, where Nk corresponds to the number of extracted

keypoints and Ij to a matrix of intensities. In our setup,

the extracted keypoints are represented by position, scale

and angle. Thus each keypoint can be encoded by a pair of

points [c
(l)
j , o

(l)
j ]T , where c

(l)
j represents the image coordi-

nates of the keypoint and o
(l)
j the keypoints angle and scale.

Assume p
(l)
j is the center of an object in image coordinates,

which, for detection purposes, we encoded in the keypoints

local coordinate system.

3 Detection

Due to unknown 3D orientations of objects, separate de-

tections are ran for all object templates. The object of in-

terest is detected in a cascade using the generalized Hough

transform [1], MLESAC [8] and a verification step utilizing

normalized cross correlation.

3.1 Generalized Hough transform

We utilize the generalized Hough transform [1] for object

center detection, since it can be used to detect an arbitrary

object if encoded in Hough space.

Initially keypoints are extracted from the image and each

keypoint is matched to the most similar keypoint in the

model. The matching is done in terms of the smallest dis-

tance, i.e. nearest neighbours. A similarity transformation

matrix T between [c, o] and matched [c̃, õ] is calculated,

and a predicted object center is calculated as p̃
(l)
j = Tp

(l)
j .
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The id of the predicting keypoint is recorded and the pre-

dicted object center is accumulated in an accumulator field

of ρ square cells width. This is performed for all keypoints.

To account for noise in keypoint location and errors in ap-

proximating a general perspective projection with similar-

ity transform, each keypoint votes into a rectangular neigh-

bourhood, with the size of the rectangular proportional to

the detected keypoint scale. The so obtained array is post-

processed by nonmaxima suppression and only the local

maxima exceeding a threshold θ are considered for further

processing.

Since we can identify keypoints that voted for the ob-

ject center, we first apply a filtering step to remove key-

points that are outliers. This is achieved by the analysis

of the scale of the voting keypoints. The assumption is

that correctly detected keypoints should be predicting ap-

proximately equal scale of the object. To remove the out-

liers the following technique is applied. Let {Si}i=1:Nc

be the set of object scales that keypoints voted for, where

Nc is the number of keypoints that voted for object cen-

ter and Si is computed as the Euclidean norm ||Si|| =
√

Ti(1, 1) +Ti(2, 2). This set is pruned by removing ten

percent of the keypoints with lowest and highest predictions

of object scale. This yields a set of keypoints predicting a

more refined scale of the object, with matches in the object

model.

3.2 Iterative bounding box estimation

On the obtained set of keypoints, MLESAC is applied in

order to further omit possible outlier interference, and fit

a homography to the best keypoint subset. This yields a

prediction of the objects location in the image to which we

apply additional filtering.

The predicted object location, encoded as the objects

bounding box and the fitted homography are verified in or-

der to detect matrix singularity and strong bounding box

skewing which imply false homography estimation. If the

verification is passed, all the keypoints that lie outside of

the estimated object bounding box are removed, and MLE-

SAC is applied on the set of remaining keypoints, yielding a

new best fitting homography. This process is repeated until

the set of selected keypoints stops changing. The filtering

process is illustrated in Figure 1.

3.3 Normalized cross correlation verification

The final verification step requires the stored intensity tem-

plate Ij , of the corresponding face of the object. The de-

tected bounding box is transformed to a n × n intensity

matrix Ĩj which is verified against the stored intensity tem-

plate. In order to address partial object occlusions both

intensity templates are divided into a two by two grid as

shown in Figure 2. Normalized cross correlation is com-

puted for each cell, as shown in Figure 3, and the mean of

two highest responses is taken as the final matching score.

The bounding box hypothesis passes the test if this score

exceeds a threshold γ, otherwise the hypothesis is rejected.

Figure 1: Example of iterative bounding box estimation.

The blue colour indicates keypoints that voted for object

center but were removed by scale filtering. The yellow

colour bounding box is the initial estimation and the yellow

keypoints are the keypoints that were removed, since they

lie outside of the yellow bounding box. The cyan keypoints

are the final keypoints used for the final cyan bounding box

estimation.
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Figure 2: Intensity template division. Before computing

normalized cross correlation intensity templates are divided

into a two by two grid. The normalized cross correlation is

then computed for each corresponding cell and the mean of

two highest responses is taken as the final matching score.

4 Experiments and results

We evaluated our proposed model on the challenging real

world dataset [4], containing everyday grocery items in scenes

with strong illumination and viewpoint changes, occlusions,

clutter, and examples containing multiple instances of the
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Figure 3: Normalized cross correlation. The upper left cell

of the detected object intensity template is compared to the

upper left cell of the model intensity template.

same object. We took seven out of ten dataset grocery

items, displayed in Figure 4, for our experiment to esti-

mate preliminary model performance. Items ”ricepilaf”,

”rice tuscan” and ”diet coke” where not used in our prelim-

inary experiment since we used planar viewpoint images

of objects to construct viewpoint consistent objects models

and no planar images where available for these items. The

detection of each of the seven items was evaluated on 50
images per item, containing one or more instances of the

same item. The total number of processed images was 350.

The experiment was executed as follows. For each of

the seven items an object model Mi is learned using a set

of different viewpoint images Tj of the object. For each

object a set of test images containing one or multiple in-

stances of the object is processed. A detection is valid if

the detection bounding box passes the filtering step and if

the overlap with the provided ground truth bounding box is

over 0.3 in terms of the Pascal VOC overlap measure [3],

which is defined as the fraction of the intersection between

two bounding boxes and their union.

The generalized Hough accumulator filed is set to ρ =
50 square cells width and thresholded with θ = 10. The

threshold value for normalized cross correlation is set to

γ = 0.5. Keypoints are extracted using the SIFT [5] key-

point detection algorithm. In our experiment, we use the

intensity template size of n = 50 pixels.

4.1 Results

The results of the experiment are presented in Table 1. For

each item we compute precision, recall and the F-measure,

i.e. the harmonic mean of precision and recall. Figure 5

shows an example of detecting multiple instances of the

same objects from different object viewpoints. Figure 6

shows an example of partly occluded object detection.

We can observe that for most items, precision, i.e. the

fraction of retrieved instances that are relevant is quite high,

especially in the case of cuboid items like ”Carton oj”, ”Car-

ton soymilk” and ”Juicebox”. In the case of Cylindrical

items like ”Can chowder” and ”Tomatosoup” a drop in pre-

cision performance is noticeable. A substantial precision

Detection 1
Detection mask

Pascal overlap 0.5590 GT mask 1

Detection 2
Detection mask

Pascal overlap 0.6479 GT mask 2

Figure 5: Object detection example. Our proposed method

is able to detect an object from multiple views as well as

detect multiple instances of the same object.

Detection 1
Detection mask

Pascal overlap 0.4595 GT mask 1

Figure 6: Occluded object detection. Detection is robust

even though almost the whole bottom half of the object is

occluded.

performance drop is noticeable in the case of low textured

or ovoid items as in the case of ”Can soymilk” and ”Potroast-

soup”. Recall, the fraction of relevant instances that are

retrieved, however is high only for ”Carton oj”. Only ap-

proximately half of items were detected for ”Can chow-

der”, ”Carton soymilk” and ”Juicebox”. The lowest recall

values are reported for ”Can soymilk”, ”Tomatosoup” and

”Potroastsoup”.

During the experiment we noticed examples of false de-

tections, i.e. detected locations that don’t contain the object

in question as shown in Figure 7. This is due to the fact,

that the current proposed method relies on a single keypoint

to cast a vote. This presents a problem since arbitrary key-

points, not located on the object in question, can be matched

to model keypoints and thus introduce noise into the detec-

tion process. Even the last verification step utilizing nor-

malized cross correlation cannot prevent a false detection if

the detected regions intensities are, to some extent, similar

to the model intensities. In some cases we noticed mis-

matched bounding box estimations. Again, the reason for

this could lie in the already mentioned fact that we rely only

on one keypoint to cast a vote. If enough keypoints, that

don’t line on the object in question, vote for the same cen-

ter there still might be outliers, voting for a different object

scale, thus interfering in the bounding box estimation pro-

cess. Another occurring problem is that some objects don’t

get detected. The reason behind this probably lies in the

tuning of the keypoint detection algorithm’s parameters in

order to extract a sufficient amount of keypoints even on
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Can chowder Can soymilk Carton Soymilk Carton oj Juicebox Potroastsoup Tomatosoup

Figure 4: Dataset grocery items used in our experiment. Cuboid items are ”Carton oj”, ”Carton soymilk” and ”Juicebox”.

Cylindrical items are ”Can chowder”, ”Tomatosoup” and ”Can soymilk”. ”Potroastsoup” is an ovoid item.

Object Precision Recall F-score

Can chowder 0.5781 0.4933 0.5324

Can soymilk 0.3548 0.2716 0.3077

Carton oj 0.7397 0.7500 0.7448

Carton soymilk 0.7241 0.4516 0.5563

Juicebox 0.6143 0.5119 0.5584

Potroastsoup 0.2586 0.3750 0.3061

Tomatosoup 0.5079 0.3019 0.3787

Table 1: Evaluation results. For each object, the proposed

model detection performance is expressed in precision, re-

call and F-score.

Detection 1
Detection mask

Pascal overlap 0.0931 GT mask 1

Figure 7: False detection. An object is falsely detected due

to single keypoint voting. Since a large green area is found

in the scene, which is the same colour as the object in ques-

tion ”potroastsoup”, arbitrary keypoint detections appear

which are matched to the object model.

smaller object occurrences, i.e. objects that appear farther

in the background.

5 Conclusion

The proposed keypoint based detector demonstrates a solid

performance on the challenging real world dataset. A 3D

object is modelled by multiple planar models, obtained from

multiple views of the object. Each view, i.e. face of the

object is encoded by a set of keypoints and an intensity

template. Object detection is performed for all object tem-

plates. Estimated object locations are verified in a cas-

cade of verification steps to ensure a robust object detection.

There are still examples of false detections, i.e. detected

locations that don’t contain the object in question. As ar-

gumented, this is due to the fact, that the current proposed

method relies on a single keypoint to cast a vote, which

potentially introduces noise into the detection process, as

keypoints can emerge on arbitrary locations. In our future

work we plan to research local keypoint grouping as this

could reduce noise, introduced by single keypoint voting.

Furthermore a local group of keypoint should improve de-

tection performance, as specific groups of keypoints are not

likely to appear at arbitrary locations.

References

[1] D. H. Ballard. Readings in computer vision: Issues, problems, prin-

ciples, and paradigms. chapter Generalizing the Hough Transform

to Detect Arbitrary Shapes, pages 714–725. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1987.

[2] O. Chum, J. Philbin, J. Sivic, M. Isard, and A Zisserman. Total

recall: Automatic query expansion with a generative feature model

for object retrieval. In Computer Vision, 2007. ICCV 2007. IEEE

11th International Conference on, pages 1–8, Oct 2007.

[3] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn,

and Andrew Zisserman. The pascal visual object classes (voc) chal-

lenge. Int. J. Comput. Vision, 88(2):303–338, June 2010.

[4] E. Hsiao, A Collet, and M. Hebert. Making specific features less dis-

criminative to improve point-based 3d object recognition. In Com-

puter Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-

ence on, pages 2653–2660, June 2010.

[5] David G. Lowe. Object recognition from local scale-invariant fea-

tures. In Proceedings of the International Conference on Computer

Vision-Volume 2 - Volume 2, ICCV ’99, pages 1150–, Washington,

DC, USA, 1999. IEEE Computer Society.

[6] M. Merler, C. Galleguillos, and S. Belongie. Recognizing groceries

in situ using in vitro training data. In Computer Vision and Pattern

Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8, June

2007.

[7] Paolo Piccinini, Andrea Prati, and Rita Cucchiara. Real-time object

detection and localization with sift-based clustering. Image Vision

Comput., 30(8):573–587, August 2012.

[8] P. H. S. Torr and A. Zisserman. Mlesac: A new robust estimator

with application to estimating image geometry. Comput. Vis. Image

Underst., 78(1):138–156, April 2000.

[9] T. Winlock, E. Christiansen, and S. Belongie. Toward real-time gro-

cery detection for the visually impaired. In Computer Vision and

Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer So-

ciety Conference on, pages 49–56, June 2010.

[10] Yimeng Zhang, Zhaoyin Jia, and Tsuhan Chen. Image retrieval

with geometry-preserving visual phrases. In Proceedings of the

2011 IEEE Conference on Computer Vision and Pattern Recogni-

tion, CVPR ’11, pages 809–816, Washington, DC, USA, 2011. IEEE

Computer Society.


