
ERK'2016, Portorož, B:23-26 23

JWEB — Literate Programming for Java

Boštjan Slivnik
Faculty of Computer and Information Science

University of Ljubljana, Slovenia
Email: bostjan.slivnik@fri.uni-lj.si

Abstract
JWEB, a system for literate programming in Java pro-
gramming language, is described. It has been made by
replacing code for processing C and C++ (and to some
extend Java as well) in CWEB with code tailored spe-
cifically for processing Java. Thus, CWEB’s tools cweave
and ctangle were replaced by tools jweave and jtangle
in JWEB, but a large amount of code remains the same.
This paper is a report on the main design decisions that
had to be taken during JWEB development. These in-
clude, among others, keeping the C preprocessor a part of
JWEB, resolving certain typographical details like type-
setting class names and section headers. Furthermore,
the construction of context-sensitive grammar for pars-
ing chunks of Java code is discussed.

1 Forewarning
Literate programming has been invented by D. E. Knuth
somewhere before 1981 [1, 2, 3]. It is therefore remark-
ably older than many bizarre phenomena computer sci-
ence and software engineering have been littered with
since those early ages. . . and yes, the Python program-
ming language (1991) is precisely such peculiar rubbish
an enlightened computer programmer reading these lines
should first think of. It is also older than the latest reincar-
nation of the UEFA Champions League (1992) and it ap-
peared even before Sir Alex Ferguson took over ManUtd
(1986). . . ohh, all those glorious years. However, it is
perhaps worth mentioning that literate programming is
nevertheless younger than smileys as they were first in-
troduced by English poet Robert Herrick in his poem To
Fortune in 1648. In a few words, the idea of literate pro-
gramming emerged approximately at the same time as a
small subalpine tribe started claiming its thousand years
dream of becoming a sovereign nation. Nowadays, many
would argue that the idea of literate programming is as
widespread as is the belief that the particular tribe has
demonstrated its aptitude for ruling itself in any respect-
ful way. You have been warned. . .

2 On Literate Programming
Knuth envisaged literate programming as a paradigm sti-
mulating the programmer to concentrate on the explana-
tion of a program, how it is constructed and also why it

is constructed as it is and not perhaps otherwise. The re-
sulting artefact is thus not merely a program but an essay
containing both the explanation of the program’s logic
as well as the program’s code. These two ingredients
should be interwoven in the same document so that the
text follows the programmer’s line of thought and not the
program’s structure as imposed by the programming lan-
guage used.

Technically, the programmer writes a programming
essay in a single file containing the explanation written
in TEX and code written in a selected programming lan-
guage. The original literate programming tool WEB [1]
combining TEX and Pascal consists of two tools, namely
weave and tangle. If the entire essay is stored in file
foo.w, then

• weave is used to produce the file foo.tex con-
taining the printable copy of the essay intended to
be read by humans. . . well, programmers;

• tangle is used to produce the file foo.pas con-
taining the program’s Pascal code intended to be
compiled using the Pascal compiler.

The two by far the most important pieces of software ever
written using WEB (or literate programming in general)
are Knuth’s TEX [4] and METAFONT [5].

WEB lead to the creation of a number of similar tools.
It was rewritten for other programming languages, e.g.,
CWEB [6] for C / C++ or FWEB [7] for C / C++ / Fortran
77 / Fortran 90 / Ratfor, but language agnostic tools are
also available. For instance, nuweb combines LATEX and
any programming language of programmer’s choice [8].
As no programming language is built into nuweb, it can-
not perform any prettyprinting and does not produce the
index of identifiers. However, it can also generate an
HTML version of the documentation. Likewise, noweb,
a slight simplification of Knuth’s literate programming,
provides no prettyprinting [9]. On the other hand, Spi-
derWeb is a tool for replacing Pascal in the original WEB
system with another programming language [10]. At pre-
sent, no specialised literate programming tool for Java
able to typeset fragments of Java source code is known
to the author.

Finally, literate programming must not be confused
with other approaches for creating source code and API
documentation [11, 12, 13], e.g., JavaDoc, Jadeite or Do-
xygen. These tools mostly produce (API) documentation

24

§4 EXAMPLE1A CWEB OUTPUT 1

1. Some code is explained below, in Section 2.

public class Main {
public static void main (String []args)
{

h print banner 2 i
}

}

2. This is inserted into the code of Section 1.

h print banner 2 i ⌘
System .out .printf ("Hello world.");

This code is used in section 1.

3.

4.

args : 1.
main : 1.
Main: 1.
out : 2.
printf : 2.
String : 1.
System : 2.

Figure 1: A simple Java program typeset by CWEB illustrating
how the program written in CWEB might be split into sections.

focusing of what each part of the source code does rather
than how and why it does what it does.

3 CWEB in Particular
The logical first step in writing literate Java programs is
to use CWEB [6] because

CWEB is a version of WEB for document-
ing C, C++, and Java programs.

— Knuth’s home page.

Thus, a simple “Hello world” program might be writ-
ten and typeset as shown in Figure 1. The example il-
lustrates how a program written in CWEB is split into
sections where each section documents a small part of
code. cweave retains the ordering of sections while ctan-
gle produces the valid Java source by inserting the code
of “named” sections into the code of other sections. The
sections in Figure 1 might have been written in differ-
ent order if the programmer decided otherwise. cweave
would respect the ordering, ctangle would produce the
same output.

But after a rather quick examination, one finds that
CWEB does not work as it probably should for Java pro-
grams. For instance, a simple Java program

class Main { Main() {} }

is typeset by cweave and TEX correctly as shown in Fig-
ure 2 while a similar program where it is explicitly spec-
ified that class Main extends class Object , is typeset in-
correctly as shown in Figure 3. In terms of literate pro-
gramming and prettyprinting, the difference is not only
that symbol extends is not recognised as a keyword but
also that symbol Main is no longer recognised as a class
name. This becomes important later when variables of
class Main are declared and index is generated.

Note that in this example CWEB does not misunder-
stands Java because the example includes some syntactic
structure that has been introduced into Java after CWEB
has been written. After all, extends clause have been
a part of Java from version 1.0. Many other examples
where CWEB misunderstands Java and thus typesets the
code incorrectly can be constructed.

Hence, a new tool is needed for Java and to create
JWEB, a literate programming tool for Java, a redesign of

§2 EX2A CWEB OUTPUT 1

1. Derived by default.

class Main {
Main()
{ }

}

2.

Main: 1.

Figure 2: A program typeset correctly.§2 EX2B CWEB OUTPUT 1

1. Derived explicitly.

class Main extendsObject
{

Main ()
{ }

}

2.

extends : 1.
Main : 1.
Object : 1.

Figure 3: A program typeset incorrectly.

CWEB has been chosen instead of implementation from
scratch. In the first place because for typesetting C and
C++ CWEB is an excellent piece of software that can
mostly be reused as demonstrated by SpiderWeb. Fur-
thermore, C and C++ on the one hand and Java on the
other are syntactically close enough to Java and thus the
modification of the existing software should most likely
be rather limited. And finally, all tricks of TEX built into
WEB and CWEB by Knuth can be reused easily.

4 JWEB Desing Issues
As described above, JWEB has been made by reusing the
code of CWEB. Therefore, JWEB incorporates the same
idea and the same overall design as the original WEB and
CWEB, i.e., the source file with extension .w is processed
by jweave and jtangle. Apart from the lexical and syntac-
tic modifications that are necessary for the latest version
of Java and which are discussed in the next section, a few
general decisions had to be taken.
The C preprocessor. As plain Java does not assume a
preprocessor, a question whether to keep the C prepro-
cessor support built into CWEB or not raises up. Both an-
swers, positive and negative, could be argued for. How-
ever, it has been decided that the preprocessor support
remains. First, literate sources must be processed by one
preprocessor, i.e., jtangle, before actual compilation with
javac and thus entire compilation process will most likely
be automated using make-like tool anyway. Hence, it
does not take much to use yet another preprocessor. Sec-
ond, the original WEB supports simple macros even tho-
ugh no preprocessor support was envisaged for Pascal
(but Knuth demonstrated in TEX and METAFONT that
macros can be useful in Pascal as well). And finally, if
you don’t like it, just don’t use it.
Typesetting class names. In CWEB a class name must
be known to cweave before it is used so that it can be
typeset as a type name, i.e., in roman bold typeface, and
that template parameters (if present) can be typeset cor-
rectly (< and > get replaced by 〈 and 〉, respectivelly). If a
name is used in a section that preceedes the section where
the name is declared, the programmer must use a format-

25

§5 EX3 CWEB OUTPUT 1

1.

[[print banner 2]]

2. This is inserted into the code of Section 1.

[[print banner 2]] ⌘
System .out .printf ([[banner 3]]);

This code is used in section 1.

3. Actual banner.

[[banner 3]] ⌘
"Hello world."

This code is used in section 2.

4.

5.

out : 2.
printf : 2.
System : 2.

Figure 4: Section headers typeset using [[and]].

ting declaration (@f or @s) telling cweave explicitly how
to typeset it.

With its enormous API Java provides a lot of class
names by default and even more once they are imported.
To avoid long lists of formatting declarations (placed far
away from actual definitions) and in some cases their sub-
sequent cancelations, JWEB typesets all identifiers, in-
cluding class names, in the same manner.
Typesetting section headers. Java (like C++) uses tem-
plates and thus symbols < and > are used not only as (a
part of) relation operators but in class names as well. In
the latter case, they are typeset as 〈 and 〉, but the same
symbols are used by WEB and CWEB to enclose the sec-
tion headers as shown in Figure 1. To avoid confusion,
JWEB uses symbols [[and]] instead of 〈 and 〉 in section
headers. So a section header is typeset as shown in Fig-
ure 4.

5 JAVA Grammar Used by JWEB
Apart from small and simple lexical modifications, the
major issue in turning CWEB into JWEB is to modify
the parser built into cweave. It should no longer support
C/C++ but specifically Java.

As each section contains just a chunk of a source
code taken completely out of the context (as some chunks
might be included for explanation only and are not a part
of the final program at all), Knuth decided to use a very
simple bottom-up parser for a context-sensitive grammar
of Pascal in WEB and C/C++ in CWEB. In short, the par-
ser starts with a sequence of symbols the chunk of code
consists of and applies the context-sensitive productions
one after another, left to right, until no production can be
applied any more. Each time a production is applied, TEX
macros for formatting (indentation, change of typeface,
some extra whitespace, . . .) are inserted.

Although Knuth and Levy wrote cweave and ctangle
in CWEB and provide a good explanation about how these
two programs work, no explanation is given why context-
sensitive productions build into cweave are as they are.
Nevertheless, the following basic principles, nowhere ex-
plicitly listed in [1, 6], can be provided:

• The grammar can describe the superset of Java al-
lowing some syntactic structures not found in Java
if this makes the grammar smaller or better suited
for typesetting (javac, not cweave, must check that
Java code is fullly standard compliant).

• The grammar does not need to identify “classic”
syntactic structures which syntax directed transla-
tion is based upon as typesetting is a much simpler
process.

• Each production should describe a reduction which
if it can it will be performed. However, the produc-
tions are numbered and a production with lower
index takes precedence over a production with a
higher index.

Finally, it must be emphasised that the grammar under-
lying the typesetting affects it strongly: some grammar
will reduce the chunk of code into a single symbol and
thus recognise a chunk of code as a single entity while
some other grammar will reduce the same code ending
up with several symbols. However, we must accept that
no grammar works in all cases.

Due to its size the entire Java grammar that is built
into JWEB cannot be presented here, let alone augmented
with comments. Therefore only two pieces of it are given,
with a short explanation, to give a reader a brief insight.
Annotations and annotation types. As the first exam-
ple let us consider handling of annotations and annota-
tion types as they both start with @. Reductions (written
as β ⇒ α instead of as a production α −→ β where
|α| ≤ |β|) handling these syntactic structures are

at sign class like⇒ class like (1)
at sign exp dot exp⇒ at sign exp (2)

at sign exp lpar ⇒ ann head lpar (3)
at sign exp⇒ annotation (4)

ann head parexp⇒ annotation (5)

As token class like denotes keywords class, interface,
and enum, reduction (1) makes jweave accept not only
@interface but also @enum and even, if applied twice,
@@class. As explained above, it is javac’s responsibility
to reject such code, not jweave’s.

Reductions (2), (3), and (4) handle annotations: when
annotation name is a compound name, when an annota-
tion has some parameters or when it does not have any
parameters, respectively. The last production transforms
an annotation head consisting of a (compound) name and
its parameters designated as parexp, i.e., an expression in
parentheses, into an annotation.
Template class names. A simple name, consisting of
a single identifier, is tokenised as exp. Hence, a chunk
of code A<B can either be a comparison of two variables
named A and B or a template class name where the final
> might be missing (as it is a part of another chunk in
another section).

As all expressions, declatators, type names and sim-
ilar syntactic structure sooner or later reduce to exp, an
important insight by itself, symbols < and > cannot be
treated as a binary operator but specifically as separate
symbols prelangle and prerangle. Thus, apart from other
reductions for exp, there are two special reductions:

exp prelangle exp prerangle⇒ exp (6)
exp prelangle exp Λ⇒ exp (7)

26

§5 EX4A CWEB OUTPUT 1

1.

h Stack.java 1 i ⌘
import java .util .⇤ ;@ Class .Annotation ("")

public class Stack < E > extendsObject
{

private LinkedList < E > stack =
new LinkedList < E > ();

}

2.

hElem constructor 2 i ⌘
Elem ()
{ }

This code is used in section 3.

3.

h Elem.java 3 i ⌘
public class Elem {
hElem constructor 2 i

}

4.

5.

Annotation : 1.
Class : 1.
E: 1.
Elem: 2, 3.
extends : 1.
import : 1.
java : 1.
LinkedList : 1.
Object : 1.
Stack : 1.
stack : 1.
util : 1.

Figure 5: Typeset with CWEB – compare with Figure 6.

where Λ denotes any symbol than cannot extend exp. Re-
duction (6) typesets prelangle and prerangle as 〈 and 〉
while reduction (7) typesets them as < and >.

Finally, let us look at Figures 5 and 6 to see the dif-
ference between CWEB and JWEB — to fit within a two
column document, a line break @/ was inserted in both
cases after annotation, right before public, and a line
break @| was inserted right after =. Although the differ-
ences might seem minor at the first glance, the code in
Figure 6 is typeset more properly: the import declaration
is recognised, annotation is recognised, the name of the
template class is typeset correctly, and most importantly,
each occurrence of a class name is typeset in the same
manner (see Elem in sections 2 and 3, in the code as well
as in the section header).

6 Conclusion
As noted above, the three major design issues explained
in Section 4 allow different decisions, and the grammar
briefly outlined in Section 5 is neither the only one ap-
propriate nor proven to be the optimal one. Yet some
decision simply must be taken, for bad or for worse.

Once JWEB is fully tested, the authors of CWEB will
be asked for permission to publicly release CWEB-based
JWEB; if permission is not granted, only patch files will
be released. It is estimated that this should happen in late
2016.

References
[1] D. E. Knuth, The WEB System of Structured Documen-

tation, available at Comprehensive TEX Archive Network
(ctan.org), 1981.

[2] D. E. Knuth, The WEB System of Structured Documenta-
tion, Technical report, Stanford University, Stanford, CA,
USA, 1983.

§5 EX4B CWEB OUTPUT 1

1.

[[Stack.java 1]] ⌘
import java .util .⇤;
@Class .Annotation ("")
public class Stack hEi extends Object
{

private LinkedList hEi stack =
new LinkedList hEi();

}

2.

[[Elem constructor 2]] ⌘
Elem ()
{ }

This code is used in section 3.

3.

[[Elem.java 3]] ⌘
public class Elem {

[[Elem constructor 2]]
}

4.

5.

Annotation : 1.
Class : 1.
E: 1.
Elem: 2, 3.
extends : 1.
import : 1.
java : 1.
LinkedList : 1.
Object : 1.
Stack : 1.
stack : 1.
util : 1.

Figure 6: Typeset with JWEB – compare with Figure 5.

[3] D. E. Knuth, Literate Programming, CSLI Lecture Notes,
Center for the Study of Language and Information, Stan-
ford, CA, USA, no 27, 1984.

[4] D. E. Knuth, TEX: The program, Computers & Typeset-
ting, Vol. B, Addison-Wesley, Reading, MA, USA, 1986.

[5] D. E. Knuth, METAFONT: The program, Computers
& Typesetting, Vol. D, Addison-Wesley, Reading, MA,
USA, 1986.

[6] D. E. Knuth, Silvio Levy, The CWEB System of Structured
Documentation, Addison-Wesley, Reading, MA, USA,
1993.

[7] J. A. Krommes, The WEB System of Structured Software
Design and Documentation for C, C++, Fortran, Ratfor,
and TEX, available at Comprehensive TEX Archive Net-
work (ctan.org), 1993.

[8] P. Briggs, J. D. Ramsdell, M. W. Mengel, S. Wright,
K. Harwood, Nuweb Version 1.57 — A Simple Literate
Programming Tool, available at nuweb.sourceforge.net.

[9] N. Ramsey Literate programming simplified, IEEE Soft-
ware, 11(5), 97–105, 1994.

[10] N. Ramsey, Literate programming: Weaving a language-
independent WEB, Communications of the ACM, 32(9),
1051-1055, 1989.

[11] D. Kramer, API Documentation from Source Code Com-
ments: A Case Study of Javadoc, Proceedings of the 17th
Annual International Conference on Computer Documen-
tation (SIGDOC’99), New Orleans, LA, USA, 147–153,
1999.

[12] J. Stylos, B. A. Myers, Z. Yang, Jadeite: Improving API
Documentation Using Usage Information, Extended Ab-
stracts on Human Factors in Computing Systems (CHI
EA’09), Boston, MA, USA, 4429–4434, 2009.

[13] G. Dubochet, D. Malayeri, Improving API Documentation
for Java-like Languages, Evaluation and Usability of Pro-
gramming Languages and Tools (PLATEAU’10), Reno,
NV, USA, 3:1–3:1, 2010.

