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Abstract
In many realistic visual surface inspection scenarios we
can expect that the distribution of images will change
with time. To solve this problem, existing methods would
require the acquisition of a new training set and model
re-training. In this work, we present a method for adapt-
ing the CS-Flow unsupervised surface anomaly detection
method to a domain shift using only a few samples from
the target domain. The proposed approach does not re-
quire access to the source domain data beyond the initial
training. We construct domain-shifted datasets using the
VisA dataset and show that the proposed approach is more
effective than using the limited amount of samples for
direct training.

1 Introduction
Visual surface anomaly detection is becoming a standard
tool in many industries. There exists a variety of methods
that perform well on multiple standard datasets. However,
once such a system is deployed its performance is likely to
decrease with time because of gradual changes in illumi-
nation, background, acquisition settings, or raw materials.
Once the domain shift has been detected, it is necessary
to collect a new dataset and re-train the model.

Normalizing flow models are generative models that
transform a complex and usually unknown distribution
into a tractable distribution (like multivariate Gaussian
distribution). Multiple surface anomaly detection meth-
ods [8, 2, 16] use them to model the distribution of features
of normal samples, obtained from a pre-trained feature
extractor, with a simple distribution. Then, anomalous
objects are detected as low probability points from this
distribution, using a distance metric and setting a simple
threshold. However, the distribution of the features of nor-
mal samples is also affected by changes in the domain. As
such, if the domain shifts (because of e.g. illumination),
these methods would detect the sample as anomalous, even
though the surface of the object has not actually changed.

All feature extractors encode information about the
domain in addition to information about the object of inter-
est. It is a non-trivial task to separate the domain-specific
and object-specific information from the common feature
space. Some researchers have observed [19, 4] that the
encoding of domain-specific information is predominantly
done by the early layers of deep networks. If we were

Figure 1: We propose a method for few-shot domain adaptation
in surface anomaly detection scenarios. In the first phase, the
normalizing flow model is trained on the source domain. In the
second phase, the first layers of the normalizing flow model are
adapted to the target domain.

to obtain a distance metric of the feature discrepancy be-
tween the source and target domains, it should be possible
to update the feature extractor, so that the embedding
space for the target domain is closer to the embedding
space for the source domain.

In this work, we propose to use a flow model trained
on normal samples from a source distribution as a distance
metric for aligning the shift between a target and source
domain, by using a few normal samples from the target
domain to constrain the feature extractor to retain object-
specific information. We present a method for few-shot
domain adaptation for unsupervised surface anomaly
detection. We use the well-known CS-Flow [8] method
for unsupervised surface anomaly detection, which models
the feature distribution of normal samples using a cross-
scale normalizing flow. Once the normalizing flow has
been trained on the source domain, its weights are frozen.
When a domain shift occurs we use the flow model to
adapt the feature extractor to the target domain. We use
the recent VisA [20] dataset and create five domain-shifted
versions for evaluation. We show that our method is more
effective than using the limited amount of target domain
data for training the anomaly detection method.
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Figure 2: During the phase of adaptation to the target domain, only the initial blocks of the EfficinetNet-B5 feature extractor are
updated. The network is updated using the same images at three scales.

2 Related work
Unsupervised surface anomaly detection aims to detect
anomalies on the surface of objects while only training
on normal samples. The two most prominent groups of
methods that solve this problem are image reconstruction-
based methods, and feature statistics-based methods. Im-
age reconstruction-based approaches like AnoGAN [9]
and RIAD [18], learn to reconstruct the normal samples.
If the reconstruction of the original image “fails” then
the image contains anomalies. Feature statistics-based
methods like GaussianAD [6], PaDiM [1], PatchCore [7],
CS-Flow [8], FastFlow [16] use a (usually pre-trained)
feature extraction network and model the distribution of
features of normal samples. At test time, some type of
distance measure is used to classify an image as normal
or anomalous. Recently, a third group of methods [17],
which create synthetic anomalies and train a discriminator
has emerged.

Domain adaptation seeks to learn on a source domain
and perform well on a target domain. Most often, the
target domain data is limited in some way. There are
numerous problem settings: the target data can be labeled
but there is not enough of them for building a good model,
it can be partially labeled or unlabeled. There can also
be only a few samples from the target domain. The most
popular approaches either learn a transformation from
one domain to the other or learn representations that are
invariant to the domain.

Test-Time Adaptation is an interesting new subfield
in domain adaptation, that addresses the problem of do-
main shift during test time. The methods in this field,
like TENT [13], TTT [10], TTT++ [4] and TTTFlow [5],
assume that during training we have access only to the
source domain, and during testing only to the target do-
main data. This is challenging because it is impossible
to directly measure any discrepancies. TTTFlow uses
a normalizing flow to model the feature distribution for
the source domain and is the inspiration for the method
proposed in this paper.

3 Method
We are using a pre-trained feature extractor fFE(x) = y
that maps an image x ∈ X to its feature representation
y ∈ Y and a normalizing flow model that learns a bijective
mapping from the unknown distribution pY of the feature
space Y to a latent space Z with a multivariate Gaussian
distribution pZ .

In the first phase of training, the feature extractor’s
weights are kept frozen and the normalizing flow model
z = fNF (y) is trained on the source domain using normal
samples from the source domain:

pY (y) = pZ(z)

∣∣∣∣ det ∂z∂y
∣∣∣∣. (1)

For convenience, the equivalent objective being opti-
mized is the log-likelihood:

L(y) = − log pY (y) =
∥z∥22
2

− log

∣∣∣∣ det ∂z∂y
∣∣∣∣. (2)

This is identical to the training procedure for anomaly
detection on the source domain. At test time, we can clas-
sify the whole image as anomalous by using a threshold
θ:

Annomalous(x) =

{
1 if pZ(z) < θ

0 if pZ(z) ≥ θ.
(3)

Since the flow model is fully convolutional, we can lo-
calize an anomalous region in the image x by looking at
the score for each (i, j) position of the feature map y by
aggregating the z values along the channel dimension.

In the second phase, we adapt the feature extrac-
tor fFE to the target domain, so that when a sample
xshifted ∈ Xshifted from a shifted domain arrives, the
feature extractor will map it to the same feature space Y .
To do this, the weights of the trained normalizing flow
model fNF are frozen, as well as most of the weights of
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the later stages of the feature extractor fFE . Only the
first five stages (or blocks) of fFE are being updated, by
using the same loss as in (3) calculated from a few normal
samples from Xshifted and backpropagating the gradients
through fNF and fFE , as illustrated in Figure 1.

The approach is demonstrated using the EfficientNet-
B5 [12] model pre-trained on Imagenet-1K as a feature
extractor. The normalizing flow model is a cross-scale
flow as described in [8]. Because the cross-scale flow
uses features extracted from three different resolutions of
the input image, a single target domain sample generates
three training samples for the adaptation of the feature
extractor. The stages that are being updated are the first
five MBConv [11] blocks.

4 Experiments
4.1 Dataset
We evaluate the method using the recent VisA [20] dataset.
Since there are no available datasets that represent the
domain shifts we are interested in, we create five domain-
shifted versions of the dataset: VisA-brg, VisA-coljit,
VisA-gray, VisA-ljs, and VisA-ld. The VisA-brg dataset
was obtained by simply permuting the channels of the
original images as RGB→BRG. The VisA-coljit dataset
was generated using the color jittering technique for image
augmentation; in our case, the same image transformation
was applied to all images. All images were first trans-
formed into HSV representation, all channels were mul-
tiplied with a constant factor, and then the images were
reverted to the RGB representation. VisA-gray is simply
a grayscale version of the original. VisA-ljs and VisA-ld
were generated using the WCT2 [14] method for style-
transfer, where two arbitrarily chosen images (images of
Ljubljana sunrise and Luka Dončič) were used as a style
image. A number of images from these datasets, showing
the influence of the applied transformations, are shown
in Figure 3. For the evaluation, all images are resized to
512× 512 pixels. The results were generated using 5-fold
cross-validation.

Figure 3: Examples from the domain-shifted dataset for five
object categories. In the leftmost column, we see the objects as
they look in the original dataset. The other columns depict the
domain-shifted images.

4.2 Baselines
As the best-base baseline, we train the CS-Flow models on
the training sets of each of the shifted domains and eval-
uate them on the test sets in the corresponding domains.
The average AUROC score across the five domains is 0.91,
represented as the blue line in Figure 4. As the worst-case
baseline, we train the CS-Flow model on the training set
of the original domain and evaluate it on test sets of the
shifted domains. As represented by the red line in Fig-
ure 4, this results in a significant drop in performance and
an average score of 0.64.

As a more realistic baseline, we train the model on
randomly chosen 1, 5, or 10 images from each target
domain and evaluated on the corresponding test set. From
the results, we can see that even using a single image
from the target domain is better than using the complete
source domain. It is also somewhat surprising that using
10 images did not bring significant improvements in the
performance.

As another realistic baseline, we added the few sam-
ples from the target set to the complete source set and
trained a model on the joined set. We can see that in
this case, whether we used only 1 or we used 5 samples
made a large difference. There is a further increase in
performance if we use 10 images. The results from these
baselines are represented by the orange and green bars in
Figure 4, respectively.

Figure 4: The AUROC metric, using the CS-Flow method, as
evaluated on the (shifted) target domain. The blue line is the
best-case scenario, training on the complete training set of the
shifted datasets. The red line is the worst-case scenario when we
train only on the original domain. The orange bars are the results
from training on a few samples from the shifted domains, the
green bars are the results from training on the complete original
dataset plus a few samples from the shifted domains and the dark
blue bar is the score for the proposed adaptation method, first
trained on the complete original domain and adapted on a few
samples from the shifted domains.

4.3 Proposed approach
We trained a CS-Flow model on the complete source do-
main, and adapted the feature extractor as per our method,
using 1, 5, or 10 images from the target domain. From
the results in Figure 4, we can see that performing adap-



393

tation in this manner brings significant improvement in
the scores, especially in the case where we are performing
one-shot adaptation. As the number of available sam-
ples from the target domain increases, the improvement
in performance that we get from performing adaptation
is decreased. This is to be expected, as having a large
number of samples from the target domain, decreases the
importance of samples from the source domain. If this
number is large enough, the samples from the source do-
main will start causing more issues during training, than
helping. The detailed per-object results are presented in
Figure 5.

4.4 Comparison with related work
Finally, since there are no methods that we can directly
compare the proposed method to, we compare the results
with related unsupervised surface anomaly detection meth-
ods in the case of one-shot learning. All methods are
trained on one image from the original domain, and evalu-
ated on the complete test set, only the results for CS-Flow
are generated both with and without domain adaptation.
From the results in Table 1 we can see that the basic CS-
Flow has worse performance than SPADE or PatchCore.
CS-Flow with the proposed adaptation (which unlike the
rest of the methods has access to the source domain) out-
performs these methods. Our proposed method achieved
comparable results to the recently proposed zero/few-shot
anomaly detection method WinCLIP [3]. Note that we
used images with resolution 512× 512, while WinCLIP
used the full resolution images.

Table 1: One-shot learning, for unsupervised surface anomaly
detection.

Method Image-level AUROC %
SPADE [15] 79.5
PaDiM [1] 62.8

PatchCore [7] 79.9
CS-Flow [8] 74.1
WinCLIP [3] 83.8

CS-Flow with DA 83.7

5 Conclusion
In this work, we presented an approach for few-shot un-
supervised domain adaptation for unsupervised anomaly
detection. The approach is suitable for adapting anomaly
detection methods that use a normalizing flow to model the
distribution of features of normal samples. We created a
dataset for evaluating the method, generated from the VisA
dataset and simulating domain-shift in the acquisition of
industrial images. We showed that it is more effective
than simply using the few samples that are available for
training an anomaly detection method.

While the method shows significant improvement when
compared to simply training with a few samples, further
improvements are needed for the method to achieve scores
that are near the performance on the original domain. This
might be possible to achieve by using an additional nor-
malizing flow model, by using perturbations of the few

Figure 5: Results for each object from the VisA dataset.

target domain samples, in order to artificially increase the
number of domain-specific samples.
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[9] Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth,
U., Langs, G.: Unsupervised anomaly detection with gen-
erative adversarial networks to guide marker discovery. In:
Information Processing in Medical Imaging - 25th Inter-
national Conference, IPMI 2017, Boone, NC, USA, June
25-30, 2017, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10265, pp. 146–157. Springer (2017)

[10] Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A.A., Hardt,
M.: Test-time training with self-supervision for generaliza-
tion under distribution shifts. In: Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event. vol. 119, pp. 9229–9248.
PMLR (2020)

[11] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., Le, Q.V.: Mnasnet: Platform-aware neural
architecture search for mobile. In: 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
pp. 2815–2823. IEEE Computer Society, Los Alamitos,
CA, USA (jun 2019)

[12] Tan, M., Le, Q.: EfficientNet: Rethinking model scaling
for convolutional neural networks. In: Proceedings of the
36th International Conference on Machine Learning, ICML
2019. Proceedings of Machine Learning Research, vol. 97,
pp. 6105–6114. PMLR (09–15 Jun 2019)

[13] Wang, D., Shelhamer, E., Liu, S., Olshausen, B.A., Darrell,
T.: Tent: Fully test-time adaptation by entropy minimiza-
tion. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net (2021)

[14] Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.: Photorealistic
style transfer via wavelet transforms. In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). pp.
9035–9044. IEEE Computer Society, Los Alamitos, CA,
USA (nov 2019)

[15] Yoon, J., Sohn, K., Li, C.L., Arik, S.O., Pfister, T.: SPADE:
Semi-supervised anomaly detection under distribution mis-
match. Transactions on Machine Learning Research (2023),
featured Certification

[16] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu,
L.: Fastflow: Unsupervised anomaly detection and local-
ization via 2d normalizing flows. CoRR abs/2111.07677
(2021)

[17] Zavrtanik, V., Kristan, M., Skočaj, D.: Draem - a dis-
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