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Abstract
In the era of rapid digitalization and artificial intelli-
gence advancements, the development of DeepFake tech-
nology has posed significant security and privacy con-
cerns. While a considerable amount of work has been
done on DeepFake detection and generation techniques,
assessing the quality and visual realism of DeepFakes is
still underexplored, despite the fact that this is key for the
impact a forged video can have in practice. In this paper,
we address this gap and present an effective approach
for quantifying the visual realism of DeepFake videos.
We utilize an ensemble of two Convolutional Neural Net-
work (CNN) models, i.e., Eva and ConvNext, trained on
the DeepFake Game Competition (DFGC) 2022 dataset
to regress to Mean Opinion Scores (MOS) from Deep-
Fake videos based on features extracted from a sequence
of frames. Our method secured the third place in the re-
cent DFGC on Visual Realism Assessment held in con-
junction with the 2023 International Joint Conference on
Biometrics (IJCB 2023). We provide an overview of the
models, data preprocessing, and training procedures. We
also report the performance of our models against the
competition’s baseline model and discuss the main find-
ings.

1 Introduction
DeepFakes have recently emerged as a significant threat
to the integrity of digital media. These AI-generated ma-
nipulated imagery, commonly containing human faces,
represents highly realistic counterfeit content that is in-
creasingly challenging to distinguish from authentic me-
dia. This development raises major security and privacy
concerns, necessitating effective measures for automatic
detection of DeepFakes, but also techniques for assessing
the visual realism of the manipulated data. The latter is
especially important, since the quality and visual realism
of the generated DeepFakes is strongly correlated with
the impact a given falsified video can have. However, de-
spite this importance, effective techniques for assessing
the visual realism and quality of the generated DeepFakes
are still largely missing from the literature.

In this paper, we therefore present a novel approach
for predicting the realism of manipulated videos that uti-
lizes the complementary information extracted from the
input data by two deep learning models. We train the two

gt: 3.2 pred: 3.19 gt: 4.0 pred:3.87gt: 2.2 pred: 2.23

Figure 1: Face-swap videos with different degrees of realism,
annotated with the ground truth Mean Opinion Score MOS (gt)
vs. predicted MOS (pred) by our ensemble model.

models in a regression framework on data from the recent
DeepFake Game Competition (DFGC) on Visual Realism
Assessment with encouraging results, as also illustrated
in Figure 1, and show that our ensemble approach yields
highly competitive overall performance.

2 Related work
Deepfake detection, face morphing attack detection, and
realism assessment have been a critical focus of research
in recent years due to the rapid development of deep-
fake technologies [2, 3]. Initial studies primarily targeted
deepfake detection, aiming to differentiate authentic vide-
os from AI-manipulated ones. With the advent of deep
learning, detection methods have seen significant improve-
ments. However, disparities between human and machine
perception of deepfakes, as demonstrated by Korshunov
and Marcel [4], suggest further research is necessary in
this field.

Another key study [5] highlighted the effectiveness of
combining human judgement and machine learning mod-
els for deepfake detection. The study found that this com-
bination yielded superior performance compared to either
one alone and also observed that the ability to process fa-
cial visuals, a specialized cognitive capacity, significantly
influenced human deepfake detection performance.

Visual Realism Assessment (VRA) is an extension
of the detection problem, focusing not only on the au-
thenticity of videos but also on the quality of the gen-
erated DeepFakes. Recent studies, such as the Deep-
Fake Game Competition on Visual Realism Assessment
(DFGC-VRA)[1], have aimed to develop models that pre-
dict the Mean Opinion Score (MOS) for deepfake videos,
a measure of subjective quality and realism. Sun et al. [6],
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in their paper ”Visual Realism Assessment for Face-swap
Videos,” proposed a benchmark for evaluating the effec-
tiveness of various automatic VRA models. They used
the DFGC 2022 dataset for their evaluations and demon-
strated the feasibility of creating effective VRA models
for assessing face-swap videos and emphasized the use-
fulness of existing deepfake detection features for VRA.

In DFGC 2022, the winning team used an ensemble
of models including ConvNext for their deepfake detec-
tion solution [7]. This success suggests that models like
ConvNext and Vision Transformers can be effectively used
not only for deepfake detection but potentially also for
Visual Realism Assessment. This underscores the impor-
tance of considering visual realism and human cognitive
abilities in the development of deepfake detection models
and further motivates this work.

3 Methods
Overview. Our approach leverages an ensemble of two
distinct Convolutional Neural Network (CNN) models:
Eva [10] and ConvNext [9]. Both models are equipped
with dedicated regression heads, specifically designed to
predict Mean Opinion Scores (MOS) from deepfake videos
based on features gathered from sequences of five frames.
The models have been trained on the DFGC 2022 dataset
and represent our submissions to the recent DeepFake
Game Competition on Visual Realism Assessment. The
competition was held in conjunction with the 2023 IEEE
International Joint Conference on Biometrics (IJCB 2023).
Our method managed to secure the third place in this
competition. The code for the implementation of our
models, alongside a detailed technical report, is publicly
available from our GitHub repository1.

ConvNext. The ConvNext [9] model we employ is part
of a family of convolutional neural networks (ConvNets).
It is an evolution of the ResNet architecture, progres-
sively incorporating elements from hierarchical vision Tr-
ansformers. The ConvNext model leverages the pretrain-
ed DFGC-1st-2022-model (the winner of the DFGC2022
competition [7]) as its backbone. The model is used to ex-
tract features from the input video frames. The last fully
connected layer of the backbone model is replaced with
an identity layer and a dropout layer is then introduced
to manage model complexity. A defining feature of our
ConvNext model is its approach to feature aggregation,
specifically designed to handle the mean and standard de-
viation vectors from the video frames. To accommodate
these aggregated features, several fully connected layers
are added. The final layer in this structure is specifically
designed to output the Mean Opinion Score (MOS).

The forward pass of the ConvNext model begins with
an input video sequence. A random starting point is cho-
sen within the video, from which a sequence of 5 consec-
utive frames is selected. Each frame is processed by the
backbone model to extract corresponding features. Fol-
lowing the feature extraction step, the mean and standard
deviation of the features are calculated for each frame se-

1https://github.com/TheLukaDragar/UNI-LJ-VRA

quence. The calculation is guided by the principles of av-
erage pooling and standard deviation pooling, common
techniques in the video quality assessment field. Specif-
ically, the mean fmean and standard deviation fstd of the
features are computed as follows:

fmean =
1

n

n∑
i=1

fi, (1)

fstd =

√√√√ 1

n− 1

n∑
i=1

(fi − fmean)2. (2)

Here, n represents the total number of frames, the fea-
ture vector for the i-th frame is denoted as fi and fmean

is the average feature vector. The computed mean and
standard-deviation vectors are concatenated to form the
video-level features. They are then fed into the fully con-
nected layers of the ConvNext model, culminating in the
final output: the Mean Opinion Score (MOS) for the in-
put frame sequence.

It is noteworthy that the weights of the backbone mo-
del are not frozen in the ConvNext model during train-
ing. This approach allows for the fine-tuning of the en-
tire model, including the backbone and the newly added
layers, for the specific task of predicting MOS scores on
deepfake videos. The learning objective used is the Root
Mean Squared Error (RMSE), which provides a measure
of the differences between values predicted by the model
and the values actually observed.

The Eva model. In parallel to ConvNext, we also uti-
lize the Eva [10] model, a novel approach to visual rep-
resentation learning that explores the limits of large-scale
masked image modeling (MIM) using publicly accessi-
ble data. Eva is a vanilla Vision Transformer (ViT) that is
pre-trained to reconstruct masked out image-text aligned
vision features conditioned on visible image patches. This
unique pretraining task allows Eva to scale efficiently,
even up to one billion parameters, setting new records
across a wide range of downstream visual tasks, such as
image recognition, video action recognition, object de-
tection, instance segmentation, and semantic segmenta-
tion, without heavy supervised training [10].

Just as with ConvNext, we use Eva as a feature ex-
tractor for predicting Mean Opinion Scores (MOS) on
deepfake videos. The architecture is similar to that of
ConvNext, with the backbone model replaced by the Eva
model. However, unlike ConvNext, the Eva model is not
initialized with weights from the winners of the DFGC2022
competition. Instead, we use weights pretrained on Ima-
geNet using the timm library2.

4 Experiments
Experimental dataset. The DeepFake Game Compe-
tition (DFGC) 2022 dataset, which originated from the
second DFGC, held in conjunction with IJCB-2022, is
composed of 2799 fake and 1595 real face-swap videos,

2https://github.com/rwightman/
pytorch-image-models/tree/main/results

https://github.com/TheLukaDragar/UNI-LJ-VRA
https://github.com/rwightman/pytorch-image-models/tree/main/results
https://github.com/rwightman/pytorch-image-models/tree/main/results
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each approximately 5 seconds in length. More specifi-
cally, it contains face-swap videos for 20 pairs of subjects
(IDs), and 35 deepfake creation methods. The fake videos
are generated using a variety of face-swap methods like
DeepFaceLab [8], SimSwap [11], and FaceShifter [12],
along with postprocessing operations.

For the competition 1,400 deepfake videos have been
annotated by five independent human raters who assessed
video realism among other factors, rating it on a scale of
1 (very bad) to 5 (very good) - examples of the average
scores are provided and marked as gt in Figure 1. These
1,400 videos are organized into a train set of 700 videos,
provided to participants for training, and three test sets,
used for the competition itself [1].

Preprocessing. The data preprocessing stage of our work
with the DFGC-2022 dataset involved extracting faces
from each video frame with the Multi-task Cascaded Con-
volutional Networks (MTCNN) [13] model and OpenCV
[14]. The bounding boxes of the faces were resized and
adjusted by a scale factor of 1.3, providing context and
improving prediction accuracy [7]. This process gener-
ated a new dataset of cropped face images, used as input
for subsequent modeling. By preprocessing the data prior
to model training, we were able to expedite the training
process, save time and computational resources.

Training data. We implemented a method to process
each video by selectively extracting sequences of frames.
This involved randomly selecting a starting point within
each video and subsequently capturing a sequence of five
frames from that point. The frames were then transformed
in accordance with the requirements of our modeling pro-
cess. Each sequence was matched with its corresponding
Mean Opinion Score (MOS) label.

Next, the dataset was divided into three subsets to fa-
cilitate the training, validation, and testing of our mod-
els. The distribution of the dataset was as follows: out of
the total 700 videos, 70% (490 videos) were allocated for
training, 20% (140 videos) for testing, and the remaining
10% (70 videos) were used for validation.

Experimental setup. Our training procedure involved
the use of a High-Performance Computing (HPC) infras-
tructure, facilitated by Pytorch Lightning. The employed
loss function was Root Mean Square Error (RMSE), and
AdamW was chosen as the optimizer with a learning rate
of 2e-5. The learning rate scheduler, ReduceLROnPlateau,
was incorporated along with early stopping, both of which
were monitored via validation loss. The selected hyper-
parameters were a batch size of 2, a dropout rate of 0.1,
a sequence length of 5, gradient accumulation across 8
batches, and a maximum of 33 epochs. Training was
conducted on two Tesla V100S-32GB GPUs using a dis-
tributed data parallel (ddp) strategy.

Due to the non-deterministic nature of the training
process, multiple models were trained with identical pa-
rameters. From these runs, the model with the best per-
formance, as determined by validation loss, was selected
for the final submission. Weights & Biases was utilized
for logging and real-time tracking of the training pro-

cess. At the end of the training, the best model check-
point based on validation loss was selected and further
trained with the same hyperparameters to accommodate
the remaining data. Once early stopping was triggered,
this final model checkpoint was saved for the final pre-
dictions.

Predictions and model averaging. The final model che-
ckpoints of both the ConvNext and Eva models were uti-
lized to make predictions on the test sets for our final
submission. These test sets, referred to as Test Set 1
(300 videos ID-disjoint with the train set), Test Set 2
(280 videos method-disjoint), and Test Set 3 (120 videos
ID&method-disjoint), were extracted from different sub-
sets of the DeepFake Game Competition (DFGC) 2022
dataset.

Our dataloader operates in a stochastic manner, se-
lecting sequences of 5 frames from the videos at random.
To mitigate the variance introduced by this randomness,
we applied an averaging strategy for each test set: we
generated predictions 10 times and then computed the
average. This procedure yields more robust predictions
that accommodate the inherent randomness of our frame
sequence selection process. For the combination of pre-
dictions from the two models, we employed a weighted
average approach. The final prediction was computed as
0.75 times the ConvNext prediction plus 0.25 times the
Eva prediction. This weighting scheme was chosen due
to the ConvNext model’s superior performance during the
training phase.

To assess the consistency of our predictions, we cal-
culated the Root Mean Square Error (RMSE) between
pairs of predictions. For the ConvNext model, the aver-
age RMSE was found to be 0.16, indicating a reasonable
level of consistency in our predictions.

5 Results
Our experimental results are detailed in Tables 1 and 2,
and visually depicted in Figures 1 and 2. Table 1 dis-
plays the performance of our two distinct models, Eva
and ConvNext, and our ensemble model across three test
sets. Each model’s performance is evaluated using three
metrics: Pearson Linear Correlation Coefficient (PLCC),
Spearman Rank-Order Correlation Coefficient (SRCC),
both being the competition’s official metrics[1], and Root
Mean Square Error (RMSE).

In Table 2, we compare the final scores of our models
against the baseline model established by the competition
organizers [6]. These final scores, computed by averag-
ing the PLCC and SRCC, provide a comprehensive mea-
sure of each model’s effectiveness in visual realism as-
sessment of DeepFake videos. As shown in Table 3, our
ensemble model demonstrated competitive performance
and secured the third place in the competition3.

Regarding the data presented in Tables 1 and 2, a
noteworthy finding arises in relation to the performance
of our Eva model. Despite initially achieving marginally

3https://codalab.lisn.upsaclay.fr/
competitions/10754#results and click “Test”

https://codalab.lisn.upsaclay.fr/competitions/10754#results
https://codalab.lisn.upsaclay.fr/competitions/10754#results
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Table 1: Performance Metrics for Each Model on the Test Sets.

Model Test Set PLCC↑ SRCC↑ RMSE↓

Eva
1 0.8305 0.7919 0.4128
2 0.9158 0.9119 0.3622
3 0.8726 0.8285 0.4132

ConvNext
1 0.7899 0.7387 0.4545
2 0.9279 0.9171 0.3492
3 0.8647 0.8211 0.4303

Ensemble
1 0.8091 0.7633 0.4352
2 0.9287 0.9197 0.3447
3 0.8746 0.8318 0.4146

Table 2: Final Scores for Each Model.
Model Final Score

Baseline 0.5470
Eva 0.8585

ConvNext 0.8432
Ensemble 0.8545

lower results than ConvNext during the training phase,
Eva demonstrated superior performance on test set 1, ul-
timately attaining a slightly higher overall score. This
indicates that Eva exhibits enhanced generalization capa-
bilities compared to ConvNext.

Table 3: Top 3 Models, DFGC-VRA 2023 Competition[1].
Model Test Set PLCC↑ SRCC↑ Avg↑

OPDAI
1 0.8578 0.8372

0.88512 0.9423 0.9214
3 0.8928 0.8592

HUST
1 0.8117 0.7864

0.86112 0.9281 0.9215
3 0.8842 0.8348

Ours
1 0.8091 0.7633

0.85452 0.9287 0.9197
3 0.8746 0.8318

6 Conclusion
In our study for the DFGC-VRA 2023 challenge[1], we
utilized two distinctive CNN models, ConvNext and Eva,
to evaluate the visual realism of DeepFake videos. These
models, strategically enhanced with pre-processing, fea-
ture extraction, and model averaging techniques, were
trained to predict Mean Opinion Scores (MOS) on the
DFGC 2022 dataset. Notably, our ensemble model earned
a third-place ranking in the challenge, underscoring its ef-
ficiency in assessing DeepFake video realism.

This research made an important contribution to the
evaluation of visual realism in deepfake videos, support-
ing the pursuit of a safer digital media landscape. As part
of our future work, we plan to extend our initial model to
further improve performance.
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Figure 2: Videos featuring varying levels of realism in face-
swapping, annotated according to the Mean Opinion Score
(MOS) based on ground truth (gt) and the MOS predicted (pred)
by our ensemble model. These videos are arranged in ascending
order according to the ground truth MOS.
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