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Abstract
Diffusion models have demonstrated considerable promise
in the realm of image generation, receiving substantial
research attention. Due to their powerful high-fidelity re-
construction capabilities, they have been shown to have
potential as a foundation of reconstruction-based surface
anomaly detection methods. While numerous studies have
investigated the significance of diverse noise distributions
within diffusion models, their exploration in the context of
Surface Anomaly Detection has remained limited. To ad-
dress this, we conduct an investigation of the impact of
several distinct noise distributions on the anomaly detec-
tion capability of diffusion-based reconstructive anomaly
detection models. The results of our study provide critical
insights into the choice of noise distributions, encourag-
ing further exploration of distributions that emulate real-
world defects.

1 Introduction
Surface anomaly detection is a critical task in the field
of industrial inspection, as it aims to identify abnormal
images and accurately localize anomalous regions [1, 2].
The application of conventional supervised learning ap-
proaches, however, is challenging due to the scarcity of
labeled abnormal images. Existing surface anomaly de-
tection methods bypass this issue by leveraging only ano-
maly-free data to localize anomalies effectively.

Surface anomaly detection can currently be efficiently
addressed through various methods. Discriminative meth-
ods focus on learning the boundary that separates normal
and abnormal samples through synthetic anomaly gener-
ation during training [3, 4, 5]. Embedding-based meth-
ods [6, 7] use features extracted by pretrained backbones
to build a memory bank [8] or fit a Gaussian distribution
[9, 10, 11] over the data. Reconstruction-based methods
[12, 13, 14, 15] accurately reconstruct only anomaly-free
regions of the image while restoring the abnormal regions
closer to the normal appearance.

Diffusion models have been shown to be effective im-
age generation models [16]. Diffusion models gradu-
ally refine an image by progressively removing noise.
Diffusion-based surface anomaly detection methods [17]
rely on the standard Gaussian noise distribution and have
not significantly explored the design space of diffusion
processes. A few have explored other noise distributions

Figure 1: While Diffusion models typically use Gaussian noise
it may benefit the reconstruction process if a noise distribution
with an unequal frequency specter was used. The default dif-
fusion process is shown in blue, a noise distribution with an
unequal frequency specter process is visualized in green. Each
row showcases the diffusion process (transition from the first
toothbrush image to noise) and the reverse process (transition
from noise to the second toothbrush image). The three visual-
ized noises are samples from the three noise distributions that
are explored in this study.

[18] but were not yet applied to the industrial inspection
domain. A recent study [19] has demonstrated that al-
ternative noise distributions can be employed effectively,
indicating that the Gaussian distribution is not a neces-
sary requirement for diffusion models.

Due to this, we hypothesize that alternative noise dis-
tributions may be beneficial for surface anomaly detec-
tion and that noise distributions that have an unequal fre-
quency specter may enable the model to better learn the
normal appearance of an object. We evaluate the impact
of various noise distributions on the surface anomaly de-
tection performance of a diffusion-based anomaly detec-
tion model. Our best model that utilizes Gaussian noise
distribution achieves 93.0% I-AUROC on MVTec AD
benchmark [1] and beats most of the previously proposed
reconstruction methods.

2 Related work
Surface anomaly detection Surface anomaly detection
has emerged as a highly active research area in recent
years, with numerous approaches proposed to tackle this
challenging problem. Initially, early methods employed
auto-encoders (AE) [20, 12, 13, 21] or generative adver-
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sarial networks (GANs) [14, 15] to reconstruct objects
and detect surface anomalies. However, a shift in re-
search focus has been observed, where the use of raw im-
ages has transitioned to the utilization of feature maps [7,
8, 22, 9] extracted from pre-trained networks, enabling
the learning of normality based on these feature repre-
sentations. Additionally, an alternative research path has
emerged, involving the creation of synthetic anomalies
[3, 4, 5] and learning another discriminative network to
discriminate between the normal and abnormal images.

Diffusion models Diffusion models have experienced
a resurgence in the past two years, following the initial
work of Ho et al. [16], which introduced the basic diffu-
sion model. The main idea behind their diffusion model
is the reverse process, which slowly denoises the initially
noisy image to a clear image. The approach has been suc-
cessfully extended to various domains, such as audio and
text generation [23, 24, 25, 26].

Given that the reverse process of diffusion models can
be computationally expensive, recent work has focused
on improving the efficiency and effectiveness of these
models. Various improvements have been proposed, such
as changes to the loss function, noise distributions, and
sampling procedures [27, 28, 29, 30, 31]. An interest-
ing approach was proposed by Bansal et. al. [19], who
showed that diffusion models can invert arbitrary image
transformations without the necessary use of Gaussian
noise, but can be done with completely deterministic im-
age degradations such as blur, masking, and more.

Unsupervised anomaly detection with diffusion mod-
els Wyatt et. al. [18] proposed AnnoDDPM which
is based on the original diffusion model but instead of
adding Gaussian noise they added Simplex noise. They
applied this method to a dataset of medical images and
achieved state-of-the-art results, but did not apply the pro-
cess to the industrial inspection domain.

Zhang et. al. [17] proposed a DRAEM[3]-like net-
work (composed of the reconstructive and segmentation
network) where the reconstruction network is a standard
DDPM and the segmentation network is an UNet. They
make two steps at various points in time and average both
of the segmentation masks. The reconstructive network is
a DDPM which they did not alter in any way and they are
making single-step reconstructions.

3 Diffusion models for unsupervised anomaly
detection

3.1 Diffusion models
Diffusion models [23, 26, 27, 16], a subclass of neural
networks, belong to the family of generative models and
have been inspired by non-equilibrium thermodynamics
[32]. These models are composed of three main compo-
nents: a diffusion process, a reverse process, and a score
model. The diffusion process, also known as the forward
process, generates a sequence of noisy observations from
a target distribution, while the reverse process generates

samples from a initial distribution. The score model is re-
sponsible for estimating the steps in the reverse process.

In the DDPM the forward process is defined by pro-
gressively adding Gaussian noise for T time- steps. More
precisely we can parameterize each step as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where β1, ..., βT is the variance schedule and are held
constant as hyperparameters in the DDPM. Due to this
formulation, it can be easily seen that we can sample xt

at any timestep t with the following formula:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

xt =
√
ᾱtx0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, 1), (3)

where αi = 1− βi and ᾱt =
∏t

i=1 αi.
During training a UNet-like [33] model ϵθ(xt, t) is

trained to predict ϵ by minimizing the ℓ2 loss:

L = Et∼[1−T ],x0∼q(x0),ϵ∼(N)(0,I)

[
||ϵ− ϵθ(xt, t)||2

]
. (4)

At inference stage xt−1 is reconstructed from of xt

with the following formula:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
+ σtz, (5)

where σ2
t = βt and z ∼ N (0, 1). x0 is reconstructed

from xT iteratively from xT → xT−1 → ... → x0.

3.2 Anomaly Detection
Anomaly mask M is derived from two sources: the orig-
inal image I and the reconstructed diffused image x0. To
calculate x0 we first diffuse I for T0 steps to receive the
diffused image xT0 . The resulting diffused image xT0 is
then iteratively reconstructed towards x0 with the usage
of the reverse process. Once we have x0 the anomaly
mask M is calculated as:

M = ||I − x0||22. (6)

The anomaly mask M is then postprocessed with a mean
filter of size n× n. The final anomaly score is calculated
as the maximum value of the anomaly mask M .

4 Proposed Noise Distributions
We evaluated several different noise distributions to de-
termine their impact on the surface anomaly detection
performance of diffusion models. In Sections 4.1, 4.2 and
4.3, the Gaussian noise distribution, the Simplex noise
distribution and the mixture of Gaussian Mixture Model
distribution are described, respectively.

4.1 Gaussian noise
In the case of Gaussian noise, each pixel in the image is
sampled independently from the standard normal distri-
bution, denoted as N (0, 1).

By sampling noise from this distribution, which is
added to each pixel, a random and uncorrelated pertur-
bation is introduced, allowing for a straightforward and
accessible representation of noise in the context of this
study.
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Method Recon. Methods State-of-the-art Ours
[34] [14] [35] [36] [3] [8] [9] Norm. Simpl. Gauss Mix. Model

Carpet 84.2 69.9 70.6 98.8 97.0 98.7 100 76.4 93.5 87.4
Grid 99.6 70.8 88.3 100 99.9 98.2 99.7 100 93.8 94.0
Leather 100 84.2 86.2 100 100 100 100 99.6 99.5 99.9
Tile 98.7 79.4 73.5 98.2 99.6 98.7 100 98.5 99.4 99.3
Wood 93.0 83.4 92.3 97.5 99.1 99.2 100 98.2 99.0 96.7
Average text. 95.1 76.5 82.2 98.9 99.1 99.0 99.9 93.5 97.0 97.5
Bottle 99.9 89.2 94.2 100 99.2 100 100 89.2 98.4 97.4
Cable 81.9 75.7 83.2 91.8 70.3 99.5 100 81.7 52.7 90.1
Capsule 88.4 73.2 68.1 86.5 98.5 98.1 100 91.2 89.0 69.7
Hazelnut 83.3 78.5 85.5 95.7 100 100 100 97.8 84.5 94.5
Metal nut 88.5 70.0 66.7 96.9 98.7 100 100 90.4 92.8 96.0
Pill 83.8 74.3 78.6 90.2 98.9 99.6 99.6 80.6 80.9 95.0
Screw 84.5 74.6 100 95.7 93.9 98.1 97.8 99.9 20.3 61.0
Toothbrush 100 65.3 100 100 100 100 94.4 98.9 86.4 97.8
Transistor 90.9 79.2 84.3 95.8 93.1 100 98.8 93.0 65.0 91.6
Zipper 98.1 74.5 87.6 99.4 100 99.4 99.5 99.9 98.2 96.2
Average obj. 89.9 75.4 84.8 93.0 97.4 99.2 99.5 93.3 76.8 88.9
Average 91.7 76.2 83.9 95.0 98.0 99.1 99.4 93.0 83.5 90.4

Table 1: Results in anomaly detection (I-AUROC) on MVTec AD for various state-of-the-art approaches in comparison with ours.

4.2 Simplex noise
In the context of two-dimensional noise generation, Sim-
plex noise is generated using a specific procedure. Ini-
tially, random gradients are sampled on a simplex grid
consisting of equilateral triangles. When evaluating a
candidate point, the inner product between the gradient
and the offset of the candidate from the nearest three tri-
angle vertices is computed. These resulting values are
then interpolated to produce smooth noise. Intuitively,
Simplex noise offers potential advantages over standard
Gaussian perturbations by introducing more structured
corruption. Consequently, denoising processes can effec-
tively ”repair” these structured anomalies, leveraging the
inherent organization present in Simplex noise.

4.3 Gaussian Mixture Model
In this distribution noise is not sampled independently for
each pixel, but instead sampled once for the whole im-
age. Every noise map is made using function f that is
created from K randomly sampled 2D Gaussian compo-
nents. Each 2D Gaussian component gi(x, y) is defined
as:

gi(x, y) =
1

2πσxiσyi

· e
−

(x−µxi
)2

2σ2
xi

−
(y−µyi

)2

2σ2
yi , (7)

where gi(x, y) is the i-th 2D Gaussian component of the
function, µxi and µyi are the means of the i-th Gaussian
component along the x and y dimensions, respectively,
σxi and σyi are the standard deviations of the i-th Gaus-
sian component along the x and y dimensions, respec-
tively.

The overall 2D function f(x, y) is a sum of all K 2D
Gaussian components:

f(x, y) =

K∑
i=1

wi · gi(x, y), (8)

where wi is the weight for the i-th component. wi is
sampled uniformly from [0, 1]. f is evaluated on x ∈

{0, 1, ..., N −1}, y ∈ {0, 1, ..., N −1}, where N is equal
to the size of the image.

5 Experiment
5.1 Dataset
Our research extensively relies on a widely recognized
datasets for anomaly detection and localization: the MVTec
Anomaly Detection Dataset [1]. The MVTec AD Dataset
contains 6,612 images encompassing 5 texture categories
and 10 object categories. To ensure consistency in our
experiments, a standard preprocessing approach is em-
ployed. Each image is resized to dimensions of 256×256
and subsequently center-cropped to 224 × 224. Pixel-
level annotations are provided for the test images, en-
abling accurate evaluation and analysis.

5.2 Evaluation metrics
The performance of anomaly detection at the image level
is evaluated by employing the Area Under the Receiver
Operator Curve (I-AUROC). For anomaly localization the
pixel-wise AUROC (P-AUROC) and average precision
(AP) are employed as evaluation metrics. These met-
rics allow us to accurately assess the effectiveness of our
anomaly detection and localization algorithms.

5.3 Implementation details
This section describes the configuration implementation
details of the experiments in this paper. For the diffusion
process 1000 steps are used with a linear schedule rang-
ing from 10−4 to 10−2. ResUNet [33] is used for the base
architecture of the model with the base number of chan-
nels set to 64. The model was trained for 2000 epochs
using the AdamW optimizer with a batch size of 6. The
learning rate was set to 10−4 and was multiplied by 0.1
after 1500 epochs. Each image was first diffused for 200
steps. For obtaining the reconstruction from the diffused
image 200 reverse steps were performed. After obtaining
the final mask, it was post-processed with a mean filter of
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Method Recon. Methods State-of-the-art Ours
[34] [20] [36] [3] [8] [9] Norm. Simpl. Gauss Mix. Model

Carpet 96.3 / 61.4 87.0 / - 99.2 / - 95.5 / 53.5 99.0 / - 99.4 / - 89.8 / 60.3 71.2 / 26.7 90.0 / 58.8
Grid 98. 8/ 36.4 94.0 / - 98.8 / - 99.7 / 65.7 98.7 / - 98.3 / - 97.8 / 74.7 92.3 / 43.5 88.9 / 38.1
Leather 95.7 / 51.6 78.0 / - 99.5 / - 98.6 / 75.3 99.3 / - 99.5 / - 98.6 / 84.5 90.0 / 55.9 97.6 / 64.8
Tile 89.1 / 52.6 59.0 / - 94.4 / - 99.2 / 92.3 95.6 / - 96.3 / - 92.4 / 77.4 86.8 / 61.6 87.7 / 72.3
Wood 85.8 / 38.2 73.0 / - 88.7 / - 96.4 / 77.7 95.0 / - 97.0 / - 87.0 / 57.4 80.3 / 48.9 90.1 / 71.2
Average text. 93.9 / 48.0 78.2.0 / - 96.1 / - 97.9 / 72.9 97.5 / - 98.1 / - 93.9 / 74.5 86.1 / 47.3 90.9 / 60.9
Bottle 98.4 / 76.4 93.0 / - 97.1 / - 99.1 / 86.5 98.6 / - 97.7 / - 90.3 / 64.9 88.5 / 60.7 90.2 / 58.4
Cable 84.2 / 24.2 82.0 / - 91.0 / - 94.7 / 52.4 98.4 / - 98.4 / - 85.9 / 39.6 49.5 / 10.0 83.2 / 35.7
Capsule 92.8 / 38.2 94.0 / - 97.7 / - 94.3 / 49.4 98.8 / - 99.1 / - 96.2 / 65.4 91.3 / 51.6 85.5 / 24.2
Hazelnut 96.1 / 33.8 97.0 / - 98.3 / - 99.7 / 92.9 98.7 / - 99.1 / - 97.4 / 84.5 90.8 / 50.7 92.3 / 65.9
Metal nut 92.5 / 64.3 89.0 / - 93.3 / - 99.5 / 96.3 98.4 / - 98.5 / - 88.5 / 62.4 80.5 / 59.1 87.6 / 76.9
Pill 95.7 / 51.6 91.0 / - 98.3 / - 97.6 / 48.4 97.4 / - 99.2 / - 81.8 / 40.9 89.3 / 43.9 88.6 / 48.9
Screw 98.8 / 43.9 96.0 / - 99.5 / - 97.7 / 58.2 99.4 / - 99.4 / - 98.5 / 70.3 83.6 / 11.0 86.4 / 17.0
Toothbrush 98.9 / 50.6 92.0 / - 98.9 / - 98.1 / 44.7 98.7 / - 98.9 / - 94.1 / 63.9 82.0 / 25.6 90.4 / 44.6
Transistor 87.7 / 39.2 80.0 / - 96.1 / - 90.9 / 50.7 96.3 / - 97.3 / - 84.8 / 50.7 71.8 / 23.3 76.8 / 41.2
Zipper 97.8 / 63.4 88.0 / - 99.2 / - 98.8 / 81.5 98.8 / - 98.7 / - 97.1 / 78.2 91.5 / 53.6 90.4 / 49.3
Average obj. 94.3 / 48.7 90.2 / - 96.9 / - 97.0 / 66.1 98.4 / - 98.6 / - 89.2 / 63.5 82.8 / 39.0 87.1 / 46.2
Average 94.2 / 48.2 86.2 / - 96.6 / - 97.3 / 68.4 98.1 / - 98.5 / - 92.3 / 66.2 83.1 / 42.3 88.4 / 51.1

Table 2: Results in anomaly localization (P-AUROC / AP) on MVTec AD for various state-of-the-art approaches in comparison
with ours.

size 11×11 for the Gaussian and the Simplex noise distri-
bution, while for Gaussian Mixture Model distribution a
filter of size 5× 5 was used. Filter sizes were determined
empirically.

5.4 Results
Anomaly detection results are shown in Table 1. With
Gaussian noise distribution we achieve an I-AUROC of
90.4%, with Simplex noise distribution 83.5% and with
Gaussian Mixture Model noise distribution an I-AUROC
of 93.0%. For anomaly localization the results are shown
in Table 2. We achieve a P-AUROC of 92.3% and AP of
66.2% with the Gaussian noise distribution. With Sim-
plex noise distribution we achieve 83.1% and 42.3% and
with Gauss Mixture noise distribution we achieve 88.4%
and 51.1%. Some sample results can be seen on Figure 2.

Figure 2: Sample results for all three noise distributions.

Gaussian noise distribution outperforms most of the
previously proposed purely reconstruction methods. Pre-
vious reconstruction methods are mostly based upon auto-
encoders (AE) [20], UNet [34] and GANs [14], which
aren’t currently as capable as diffusion models in the im-
age generation aspect. It is most likely, that the diffu-

Number of steps 10 50 200 500
Normal 87.2 90.8 93.0 90.1
Simplex 81.7 82.4 83.5 82.8
Gauss Mix. Model 89.0 89.1 90.4 89.6

Table 3: Anomaly detection results (I-AUROC) for proposed
noise distributions with different amount of reverse steps.

sion model does not over generalize as much as the previ-
ous methods and creates less false positives than previous
methods. The Gaussian noise distribution lacks behind
state-of-the-art methods, due to the fact that those meth-
ods are built upon different principles that are not purely
reconstructive.

Results from the Gaussian noise distribution and the
Gaussian Mixture Model noise distribution are compara-
ble in most of the categories with two notable exceptions,
the Cable and Screw category. In both of these categories
there was an above average number of false positives.
With the Screw category, we hypothesize the model did
not learn the normality of the object due to the rotation
of the objects. In the Cable category the model struggled
to learn the normality of the copper wires, as it recon-
structed them often, even though they weren’t anoma-
lous. The Simplex noise distribution had the problems
with the false positives more often. We hypothesize the
model learned too tight of a boundary for what is a nor-
mal object and what is not, resulting in an increase of
false positives.

5.5 Ablation study
Number of reverse steps We explored the importance
in the number of reverse steps for each of the noise dis-
tributions. The results can be seen in Table 3. As we can
see there exists a finespot for each of the models which is
not the same for each distribution.
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Filter size 1 5 11 17
Normal 80.8 90.3 93.0 92.8
Simplex 80.3 81.5 83.5 82.8
Gauss Mix. Model 89.8 90.4 90.2 89.9

Table 4: Anomaly detection results (I-AUROC) for proposed
noise distributions for different kernel sizes for mask postpro-
cessing.

Size of the mean filter In most anomaly detection ap-
proaches use a mean filter to smooth the final mask. And
the size of the mean filter plays of a great importance in
the final performance of our model. The results with dif-
ferent filter sizes can be seen in Table 4.

6 Conclusion
In this study, we investigated the effectiveness of different
noise distributions, namely the standard Gaussian noise,
Simplex noise, and a Gaussian Mixture Model noise, in
the diffusion model for Surface Anomaly Detection. Our
analysis revealed an improved performance of the Gaus-
sian noise distribution over most of the previously pro-
posed reconstruction methods with an I-AUROC of 93.0%.
With the Gaussian Mixture Model noise distribution we
achieved 90.4% I-AUROC, and with the Simplex noise
distribution we achieved 81.5% I-AUROC. To gain fur-
ther insights into the distribution of actual defects, our
future work will involve exploring more complex noise
distributions, aiming to enhance our understanding and
detection capabilities in surface anomaly detection.
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