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Abstract. Human intervention is often needed if an 
assembly task which is performed by a robot arm fails. 
Through human-guided kinesthetic teaching, such error 
cases can be solved. To solve them sustainably, the error 
cases need to be classified, such that similar situations 
can be handled autonomously by the robot. One 
approach to tackle this problem is to use recorded 
trajectories. This article first compares two trajectory-
averaging methods, based on arithmetic mean and 
Dynamical Time Warping Barycenter Averaging (DBA). 
In the second step a novel classification method, based 
on Gaussian Radial Basis Functions (RBF), is compared 
with a well-established Dynamical Time Warping (DTW) 
distances-based method, with the purpose of assigning 
new thought trajectories correctly. The methods are 
applied to a database representative of errors occurring 
in a peg-in-hole task. It turns out that DBA averages a 
set of trajectories qualitatively better than the arithmetic 
mean and can tackle the multiple-modes problem. DBA 
in combination with a DTW distance-based Similarity 
Measure (SM) provides the best results, whereas the 
novel RBF-based method is not reliable. 
 
1 Introduction  
This article focuses on providing suitable methods to 
enhance the autonomy of industrial robots. It builds on 
the frameworks of Nemec et al. [1] and Simonič et al. [2], 
who develop an exception strategy for assembly tasks. If 
an error occurs during such an assembly task e.g., 
through small changes in the robot's environment, human 
intervention is required. However, most of the current 
systems are not able to learn from the previous situations. 
Therefore human intervention is needed again, even if the 
same or a similar situation repeats [1]. 
Nemec et al. [1] developed an exception strategy 
learning, through which a robot is increasingly able to 
resolve errors autonomously. If the robotic system 
recognizes an error, it switches into the gravity 
compensation mode. In this mode, an operator can move 
the arm of the robot manually by using kinesthetic 
teaching [2]. After an internal database is obtained with 
corrective actions and the errors are contextualized, a 
suitable action is computed using statistical methods [3]. 
The error context is determined from visual and force-
torque sensor data, which are combined in the process of 
data fusion. The resulting high-dimensional context 
description is further reduced to a low-dimensional one 

using predictive clustering trees  [3]. Based on the 
context estimation, the robot system can categorize the 
new error into one of the previously seen error types. 
This model works well as long as the new error lies in the 
domain in which the classifier was trained previously. As 
not all the sensor information is captured in the low-
dimensional representation, it can happen, that the 
context estimation will be the same for two different error 
types. The problem arises, that a novel occurring type of 
error is classified as an existing error type. Another 
problem in this context is, that human demonstrations can 
differ significantly from each other for one error type, 
which is known as the multiple-modes problem and is 
described in more detail in [4].  
This article compares and provides suitable methods in 
two steps. To tackle the above problems the variability of 
human-demonstrated corrective actions is used. As a first 
step, it is necessary to find a method, which leads to a 
suitable representation of one error type, to then be able 
to distinguish them in the second step. For this purpose, 
the positional components in Cartesian space and the 
orientational components in unit quaternions at each time 
point of a set of corrective actions can be used to 
determine an error type. One of these error types can be 
represented by the average of the trajectories of the 
corrective actions, in the following called correction 
trajectories and average trajectory.   
To find a suitable averaging method for a set of 
correction trajectories, two different approaches are 
compared in the first step. The first approach uses the 
arithmetic mean to average a number of corrective 
trajectories, regarding their positional component and a 
quaternion conform method for the orientational 
component. As a second approach, Dynamical Time 
Warping Barycenter Averaging is used to average the 
corrective trajectories. This type of averaging is time-
independent and highly robust, which leads to different 
resulting average trajectories [5].  
The second step demands a method, capable of deciding 
to which error type a new corrective action belongs. This 
can be done by comparing the trajectories of the new 
corrective action with the average trajectories of the 
existing error types. For that purpose, a suitable similarity 
measure is needed which provides the basis for the 
classification. Related works use such similarity 
measures based on, e.g. Euclidian distances [6]. In this 
article, two different methods are compared. The first 
method uses the distances of Dynamical Time Warping 
as a similarity measure and is well-established in the 
context of comparing time series [5], [7]. In a novel 
second approach, the weights of Gaussian Radial Basis 
Functions are used for this purpose. In [8] it is mentioned, 
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that trajectories, which are encoded in a Gaussian 
Mixture Model, which uses Gaussian kernel functions 
can be used for classification. The method is well known 
for interpolation and seemed to be a promising approach 
in the beginning. It has the advantages, that it is time-
independent, the orientational component is considered 
in the form of unit quaternions and the amount of kernel 
functions can be set to the same number for different 
trajectories, through which the weights get comparable 
[9]. This comparison can be used to determine a 
similarity between two trajectories in Cartesian space. 
To evaluate and compare the different methods, a 
database with 12 different representative error types was 
created [10]. The different methods of the first and 
second steps as well as the structure of the database are 
described in the following sections.  
 
2 Methods  
In this section, first, the structure and the labeling of the 
database are explained. This is followed by two separate 
steps. The first step describes the two averaging methods 
based on the arithmetic mean and DBA. In the second 
step, the two methods for the similarity measures are 
presented. One is based on DTW distances, while the 
other is based on the weights of Gaussian RBFs. 
 
2.1 Database  

To build up a representative database [10], capable of 
evaluating the different methods, existing infrastructure 
at the Institute Jožef Stefan was utilized. This includes 
the whole set-up of a Franka Emika Research 3 robot arm 
with an ATI Nano 25 force/torque sensor and an Intel 
Realsense D435 RGB-D camera. To take control of the 
robot arm, the intern software, developed by Žlajpah et 
al. [11] is used. The database contains data, obtained 
from executions of a peg-in-hole task, similar to the 
Cranfield Benchmark [3]. In the setup, the robot should 
put a peg in a hole, whereby systematic errors with an 
offset of 10mm in the x- and y-direction are made (see 
Figure 1). During the task, one error trajectory and ten 
correction trajectories are recorded for each of the 12 
different error types. With regard to the correct insertion 
position of the peg in the hole, a class is defined as the 
positional (x and y direction) and orientational (around x, 
y and z axes) offset of a specified error position (see 
Figure 1). Each entry includes a trajectory, force-torque 
sensor data, an RBG image sequence (sampling rate 
10Hz) and a point-cloud sequence (sampling rate 10Hz). 
A trajectory samples the position in Cartesian space and 
the orientation as unit quaternions with a sampling rate 
of 100 Hz. Error trajectories record, how an error occurs 
starting from an initial position. The last position of the 
error trajectory is the error position and classifies the 12 
different error types with the labelling system mentioned 
above. Starting from one error position, which defines 
one type, ten correction trajectories with the correct end 
position (the peg being in the hole) are recorded through 

human demonstration. In total, the database contains 120 
correction entries and 12 error entries. For the next steps, 
only the trajectories of the samples are used. Hence the 
database is made publicly accessible, the remaining data 
can be used in further research. [10].  
 

 
Figure 1: Peg in hole position with the coordinate system for 
offset (10mm) definition  

2.2 Averaging  

With the aim of representing one error type by its 
corresponding correction trajectories, a suitable 
averaging method must be found. The purpose of this is 
to average the ten correction trajectories of one error type 
regarding their position and orientation. The resulting 
average trajectory should represent the correction 
trajectories of one error type so that it can be used for the 
similarity measure in the next step. For that reason, two 
averaging methods are compared. In the first approach, 
the arithmetic mean is used for the positional components 
of the trajectory and the algorithm described in [12], to 
average the quaternions. This method requires a time-
independent representation of the trajectories. Another 
requirement is that each correction trajectory has the 
same number of sample waypoints, which is not the case 
for the original data obtained from the database. To fulfil 
these, each trajectory is first encoded with Gaussian 
Radial Bases Functions with 25 equidistant kernels [9]. 
From this interpolation, the same number of 150 
waypoints is obtained, which form a time-independent 
path. Each waypoint has a positional component and a 
unit quaternion for the orientational component (see 
Figure 2, dotted path).  
As shown in Figure 2, the first averaging approach fails 
to adequately represent most of the correction 
trajectories, as there are several modes to solve the error. 
This is due to the significant changes in the human 
demonstration that can occur when the robot arm is not 
always raised in the same way. The resulting average 
trajectory is in consequence, unable to solve the multiple-
modes problem. It is also not representative of one error 
type since it does not match the positional components of 
the majority of the corrective trajectories.  
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Figure 2: Average trajectory obtained through arithmetic mean 
(blue/dotted path) and average trajectory obtained through 
DBA (red/solid path) of one error type with a positional offset 
of: x = -10mm, y = +10mm and orientation offset around: x = 
0°, y = 0°, z = 0°. The thinner paths are the ten corrective 
trajectories.  

Because of that reasons, a second approach is developed, 
which is based on Dynamical Time Warping Barycenter 
Averaging [5]. This method uses the Dynamical Time 
Warping distance in an iterative process. Starting with an 
arbitrary average trajectory, which is, in this case, one of 
the correction trajectories, the average trajectory is 
adapted in every iteration in such a way, that the sum of 
the squared DTW distances is minimized [5]. Because 
the resulting positional components differ in their 
lengths, it is necessary to normalize them to 150 points. 
This is done by interpolating and back-transforming each 
of them through RBFs [9], similar to the first approach. 
Note that, in contrast to the first approach the averaging 
is done before the normalization through RBFs. The 
orientational component is achieved like in the first 
approach and joined with the positional component at the 
end. A possible improvement is proposed in the 
discussion. This method has the advantage, that it is time-
independent and very robust [5], which means that the 
mentioned multiple-modes problem can potentially be 
solved by an averaging method (see Figure 2, solid path).  
 
2.3 Similarity Measure and Classification 

The second step aims to find a suitable method to classify 
a newly taught corrective action. This can be done, by 
comparing the trajectory of a newly taught corrective 

action with the average trajectory of one class. To do so, 
it is necessary to define a similarity criterion. As a new 
approach, the weights of Gaussian Radial Bases 
Functions seem promising for this purpose. The method 
has three advantages. First, it is time-independent, 
second, the orientational component can be included and 
third, the amount of kernel functions can be set to the 
same number, through which the weights of the RBFs of 
different trajectories are comparable [9]. In this case, 25 
equidistant kernels are used to calculate 25 weights. For 
a description of the exact calculation see [9]. Each 
calculated weight consists of three positional and four 
orientational components. The positional components 
were compared to each other by using Eq. (1), where 𝑎!" 
is one positional component of the weight of the average 
trajectory and 𝑐!" 	is one positional component of one 
weight of the newly taught corrective action. The Index 
𝑖 = 1,… , 25 indicates the current weight and j indicates 
the positional component in Cartesian space.  
 

𝑆𝑀!"#,% = $%(𝑎&' − 𝑐&')( + ,𝑎)' − 𝑐)'-
( + (𝑎*' − 𝑐*')(

'

!  (1) 

 
In this way, a similarity measure (SM), based on RBFs 
can be defined. The lower the SM, the more similar the 
trajectory of a newly taught corrective action and one 
average trajectory of one error type. Also, the 
orientational component can be included by using the 
angular distance between the two quaternions of one 
corresponding weight i in radians (equation (2)). Here 𝑞#" 
refers to one quaternion component of the weight of the 
average trajectory and 𝑞$" refers to the conjugation of the 
corrective trajectory. By calculating 𝑆𝑀%&'_) +
	𝑆𝑀%&'_* the result is able to consider the positional and 
orientational components of the trajectories. 

𝑆𝑀!"#,+ = $%(2 cos,-(𝑅𝑒(𝑞.' ∗ 𝑞/')))(
'

!  (2) 

To compare this new approach, DTW is used to construct 
an SM for the positional component only. The method is 
described in [13] and calculates the DTW distances 
(𝑑+ , 𝑑,, 𝑑-) in equation (3) instead of the differences of 
the positional components in equation (1). 
 

𝑆𝑀012 = $%(𝑑&(𝑎&, 𝑐&))( + ,𝑑)(𝑎), 𝑐))-
( + ,𝑑)(𝑎*, 𝑐*)-

(

'

!  (3) 

 
3 Results 
To test the reliability, the methods were applied to the 
database mentioned in section 2.1. In the first step, the 
average trajectories obtained through the arithmetic mean 
and DBA are plotted for each of the twelve different error 
types. One of the twelve error types is plotted in Figure 
2. In this step, all ten correction trajectories are used for 
calculation. By comparing the two resulting average 
trajectories of one error type with each other, it turns out 
that the one obtained from DBA represents the correction 
trajectories qualitatively better. The qualitative 
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improvement in contrast to the approach, which uses the 
arithmetic mean is well visible in Figure 2. 
In the second step, the two SMs are applied to the 
database. Therefore, the ten correction trajectories of 
each error type are split randomly. Seven trajectories of 
each error type are used to calculate an average trajectory 
using DBA. The other three samples imitate "newly 
taught correction trajectories" and are considered 
correctly classified if the SM combined with the average 
trajectory of their corresponding error type is the lowest. 
First, the sum of Eqs. (1) and (2) is used to calculate the 
SMs for the respective three imitated samples of each 
error type in combination with the average trajectory of 
each error type. The accuracy can be calculated by 
dividing all correctly classified cases by all 36 cases, 
which results from the three imitated “newly taught 
correction trajectories” for each of the twelve error types. 
In the result, the accuracy of the novel method, which 
uses the weights of RBFs is 72,22%. Compared to that, 
the accuracy of the DTW distance-based approach, which 
uses Equation (3) is 100%. If the average is calculated by 
using the arithmetic mean the results do not differ 
significantly with an accuracy of 75,00% by using the 
new RBFs-based method and 97,22% by using the DTW 
distances-based method. Especially the error type with 
the configuration: 𝑥	 = 	−10𝑚𝑚, 𝑦	 = 	0𝑚𝑚; 	𝑥	 = 	0°,
𝑦	 = 	10°	𝑧	 = 	0° is wrongly classified for both 
averaging approaches by using the RBF-based method. 
Although there is one significantly deviating correction 
trajectory, similar to the three lower thin paths in Figure 
2, there are no unusual in the raw data that would explain 
this.  
 
4 Discussion  
As shown in the results, the new RBF-based method does 
not provide a reliable SM. It can be thought of 
modifications of this approach, e.g., to weight 𝑆𝑀%&',) 
and 𝑆𝑀%&',* differently or to manipulate the number of 
used kernels. But even then, it is questionable if this 
approach would succeed.  
Since the accuracy of the DTW distance-based approach 
is the best in combination with the presented DBA 
method, the focus of further research should lay here. It 
needs to be mentioned, that these two methods are based 
on DTW, which could lead to unconsidered effects. The 
problem description also requires that novel error types 
should be detected. This can be done by setting a 
threshold for the SM. The DBA method can be further 
improved by calculating the orientational component by 
using the iterative process of [5] with the quaternion 
conform QDTW distance described in [7]. For the used 
database, DBA solves the multiple-models problem 
adequately. However further research is needed to 
generalize the method. Also a comparison with other 
approaches, mentioned in [4] could be promising. 
Concerning the used database, it is mentionable, that the 
starting and end position of the correction trajectories is 
represented by a higher number of points than the middle 

part (average trajectories in Figure 2), which is caused 
through the recording configuration. In consequence, this 
point accumulations contribute more to the SM than the 
middle part, through which the classification improves. 
 
5 Conclusion 
It can be concluded that the application of DBA to 
trajectories qualitatively improves the averaging, tackles 
the multiple-modes problem and can potentially be used 
in related works. The combination of the DBA method 
and the DTW distance-based SM yields the best results 
for classification. In comparison, the initially promising 
RBFs-based approach is not reliable. Further research 
can take advantage of these findings and should focus on 
the integration of the orientational component. 
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