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Abstract. In this article, the research in Real-Time 

Strategy games is made by utilizing Association Rule 

Mining to extract relevant opponent actions, and use 

those extractions as viable information input in game 

agent modules. The Self-Preservation Module is 

presented, which supports a game agent when dealing 

with game units on the game field. The module is 

positioned at the reactive level of the agent framework. 

Its main purpose is to constantly collect game world 

information and purify, extract, and organize it to 

provide instant threat assessments regarding the units 

under the game agents' control. The data gathered show 

distinctive opponent action variations, valuable in 

module decision-making. 

 

1 Introduction 

During the last two decades, Real-Time Strategy (RTS) 

games have become one of the best testbeds for research 

of Artificial Intelligence (AI) in games research [1]. The 

main reason for this growth is that RTS games offer 

plenty of challenges for researchers, and there were also 

some tremendous commercial RTS game successes 

(e.g., StarCraft™ [2]). The genre requires many 

different areas of expertise, which the players must 

consider if they want to beat the opponent successfully. 

To cope with the complexity and sometimes partial 

information of the game environment [3], the computer-

operated agent (a game agent) can be built modularly 

(i.e., decomposing problems into more minor separate 

problems) [4]. Each module is in charge of a specific 

task, a range of similar tasks, or a whole discipline. So 

far, a great deal of research has gone into trying to 

improve particular parts (e.g., aspects such as resource 

management, etc.) or the game as a whole (e.g., 

integrating the modules into higher-level architecture 

[5]) [6]. Especially, there was much interest in 

improving strategical and tactical planning, since they 

have the most significant impact on the game’s result.  

 One of the current research trends is to bring some 

human elements into the RTS AI world (e.g., to mimic 

the human ability to adapt to previously unseen or 

unknown game situations [7]). Game agents can 

incorporate human-like factors such as creativity, 

adaptability, surprise tactics, activity levels, strategic 

planning, intuition, and perhaps most fundamentally, for 

all living beings, the will to survive. That way, the 

agents could be more realistic, and adaptive, leading to 

a more immersive and engaging player experience. 

 Our first contribution is the Self-Preservation 

Module (SPM), designed to instill a sense of self-

preservation in game units. The SPM system analyzes 

the current game state and makes strategic decisions to 

keep units safe, emulating the human instinct for self-

preservation. Some attempts can be found in the 

literature to incorporate these game mechanics in an 

agent, as seen in the allocation strategies that factor in 

elements like unit health and the balance between allies 

and enemies, which can be tied to the concept of self-

preservation [8]. However, our approach is more 

comprehensive. 

 To ensure the modules' positive impact alongside 

well-established components of the RTS AI framework, 

and, in the process, not interfere with any of the 

components already in place, the proposal of the module 

is made to enable non-invasive decisions and control 

over self-preservation behavior for all units (i.e., 

keeping them out of harm's way, when in danger, if it is 

not interfering with the game agents' agendas) under the 

game agents' command. 

 Our second contribution is to make module 

decisions online adaptive by incorporating opponent 

action extractions achieved through Numerical 

Association Rule Mining (NARM) [9]. This innovative 

approach enhances the module's ability to adapt to 

changing game situations. 

 The rest of this paper is organized as follows: 

Section 2 delves into online adaptivity, exploring how 

systems can adjust and evolve in real-time 

environments. Section 3 outlines the SPM module 

architecture, with every constituting part of the module 

described in detail. In Section 4, the focus shifts to 

action extraction driven module choices, examining the 

process and its application in game agents' decision-

making. Finally, Section 5 concludes the paper. 

2 Online adaptivity 

The ability of AI in games to adapt to changing 

environments is a significant aspect of RTS game 

research. The adaptivity field is divided mainly into 

offline and online adaptation. We talk about offline 

adaptation when game data (relevant game observation 

information like opponent actions, etc.) are collected 

during the gameplay, but the information it holds is not 

assessed until after the game. It can be processed after a 

game has been completed, or when the game 

environment is loaded next time. Offline adaptation is 

usually a good choice for processes requiring many 

computer resources (e.g., large amounts of data and/or 

computationally heavy algorithms). Therefore, they 

cannot be run during the game. The second field, online 

adaptivity, to which our work also belongs, is used for 

algorithms, which can process input into output in 

almost real-time. That way, the proper game actions can 

be taken while they still count. For example, if a 

friendly unit is attacked, it must decide either to run or 

fight back. It will be destroyed if it considers the 

response too long and stays still. Its loss will be in vain. 
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3 Self-Preservation Module architecture 

The SPM is a background worker, which works on the 

reactive level of the game agents` framework. It can 

bring some advantage over the opponents, which would 

be overlooked otherwise. Its role is to gather 

information from the game world and assess the threats 

for each unit. If necessary, it can influence the game 

actively, but only if the actions comply with the goals of 

other modules (i.e., with game agents' permission), and 

do not dramatically affect the current strategy in place.  

 By default, its role is passive. This mode of 

operation does not have direct command over the units, 

and cannot impact the other modules. However, if the 

need arises, the strategic part of the game agent can set 

SPM to be active and grant it control over units. By this, 

the SPM can issue orders directly to the units that it 

protects, and decides appropriate actions on its own. 

 SPM was designed with simplicity in mind (Figure 

1). The central component of the SPM is the Safety 

map. All other components are connected to it directly 

or indirectly. The Safety map contains a purified version 

of the current game world state and some relevant 

historical information about the past events, necessary 

to evaluate the threats and safety of the units. 

 The current operation mode and the involvement of 

SPM in a game are defined with a state variable called 

Mode of operation. As described above, there are two 

modes of behavior: Active and passive modes. Passive 

mode is the default behavior. Active mode can only be 

set from a higher module in the game agents` hierarchy. 

Besides that, there are three other SPM components: 

Damage Assessment Component (DAC), Action 

Component (AC), and Control Component (CC). CC is 

only operational when the SPM mode of operation is set 

to active. SPM communicates with other modules 

through four well-defined interfaces: Purified Game 

Data Interface (PGDI), Passive Output Interface (POI), 

Active Output Interface (AOI), and a Safety Map Data 

Interface (SMDI). PGDI is an input-only interface, 

while the other three are output-only interfaces. 

 SPM components initialize with the game agent. In 

this phase, three live game state-input parameters are 

essential: The width and height of the map (provided by 

the game engine's initial game state), the (ID) number of 

the player for which the SPM looks over its units and 

the (ID) number of the opponent. SPM then waits until 

its update method is triggered. By default, the update 

method is triggered between every frame (that's when 

the game agent has a time slice to process its moves), 

but, if need be, it can be delayed (every second, third, 

etc. frame). The update method only needs the current 

game state. During each SPM update, PGDI first 

extracts relevant feature information (e.g., damage done 

to friendly units in the last frame) and passes it to the 

DAC. DAC updates the state of the Safety map as 

presented with the pseudo-code in Algorithm 1. 

 

Algorithm 1: Pseudo-code of DAC update procedure of the 

Safety map 

     // Initial parameter settings: 
     // - color and state parameter at which point we divide cells 

     // - color and state parameter at which point we destroy cells 

     // - unit destroyed parameter 

     // - unit was hit parameter 

     // - opponent behavior changed parameter 

     // - decremental change parameter with every update cycle 
     // - minimal cell size 

 

     // Tree root and purified game data info from interface 
1.  select cell, pgdi 

2.  updateTreeRateOfColorStateDrop(cell) 

3.  divideAllCellsThatNeedDivision(cell) 
4.  destroyAllCellsThatAreNoLongerNeeded(cell) 

5.  if pgdi.sizeOfUnitsCreated() > 0 then 

6.     updateTreeForUnitsCreated(cell, pgdi) 
7.  end if 

8.  updateNeeded = false 

       // update tree when units are destroyed 
9.  if pgdi.sizeOfUnitsDestroyed() > 0 then 

10.     updateTreeForUnitsDestroyed(cell, pgdi) 

11.     updateNeeded = true 
12.  end if 

       // update tree when units are damaged 

13.  if pgdi.sizeOfUnitsDamaged() > 0 then 

14.     updateTreeForUnitsDamaged(cell, pgdi) 

15.     updateNeeded = true 
16.  end if 

       // update tree when opponent action extraction  

       // behavior changed 
17.  if pgdi.opponentBehaviorChanged() = true then 

18.     updateTreeForOpponentBehaviorChanged(cell, pgdi) 

19.  end if 
       // update tree when units move 

20.  if cell.listOfCells.size() > 0 then 

          updateTreeWhenUnitsMove(cell) 
21.  end if 

       // update tree for bringing lowest color bottom - up 

22.  if cell.listOfCells.size() > 0 and updateNeeded then 
23.     updateTreeToBringLowestColorUp(cell) 

24.  end if 

Figure 1. Self-Preservation Module architecture. 
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 AC then uses a Safety map to decide on required 

unit safety actions. For every action that must take 

place, a message is created. The message offers 

encapsulation of the following data: Which unit is in 

danger, the threat level, the cell in which the unit is 

positioned (i.e., a cell from a game tree, which is saved 

in the Safety map), and the position vector to where the 

unit should move to. If the default passive mode is 

activated, a list of messages gets passed to POI, 

otherwise to AOI. 

 The opponent action extraction process is made in 

the PGDI component of the SPM, and the data are 

pushed to the DAC. The DAC updates the Safety Map 

by considering many factors (e.g., a unit was damaged), 

including the action extraction data (blue colored lines 

17 – 19 in Algorithm 1 signal where the opponent 

behavior changes are used to update the tree). The 

Safety map as data storage is designed dynamic as the 

quad tree (a tree data structure with up to four children) 

seen in Figure 2, so we only use memory when 

necessary. Meaning that, instead of designing a memory 

overview of a battle game map in a grid-like structure,  

a dynamic design allocation fashion is made of only 

»reserving a cell when units are present in the cell«. 

 

Figure 2. Quad tree structure. 

 The DAC continuously updates the quad-tree 

following the initial parameter settings in Algorithm 1 

pseudocode. For example, if DAC requires greater 

granulation, the cell can be divided further, but only to 

the minimally set cell size. The cell can be divided 

when the units belong to more than one region (as seen 

in Figure 2). 

 The AC then has to decide if any friendly unit's 

color (i.e., status) has changed to dangerous (i.e., the 

unit is in danger). The color of each cell changes 

constantly. Color threat levels are depicted in Figure 3. 

The change in color towards black is triggered by 

increasing danger. Increasing danger happens when a 

friendly unit is damaged or destroyed, or when an 

opponent has changed action tactics towards attacks. 

The change towards white happens gradually with the 

passing of time. 

 

Figure 3. Color threat levels. 

4 Action extraction driven module 

choices 

In this section, the concept of action extraction as it 

pertains to game agents' decision-making processes is 

explored. First, the action extraction process is 

explained. Second, the experiment tests the feasibility of 

using action extractions in game agents’ decision-

making processes. 

4.1 Action extraction process 

The important function of SPM is to react to the 

opponent's strategy derived from the game states and 

actions taken so far in online mode (i.e., while the game 

is being actively played and the opponent's actions 

choices are imperative for the gameplay). The 

opponent's behavior can be non-deterministic; the same 

game-state can generate different reactions at different 

times. Only some of the moves have a significant 

impact on the game. For useful information extraction, 

the Numerical Association Rule Mining (NARM) 

method was used [10]. Association Rule Mining (ARM) 

is a data mining technique that finds data patterns 

representing relationships between items. ARM operates 

with binary data; NARM can also operate with 

numerical data. 

 The association rules were derived based on the 

gaming state and actions recorded from the beginning of 

the game. Only the association rules that contain the 

opponent's action and high-enough confidence were 

kept. Then, each action's frequency (the number of 

occurrences) is calculated. The result is a support vector 

of each possible (valid) opponent's actions. 

4.2 Experiment: Action extraction driven module 

choices 

The experiment was designed in a microRTS simulation 

environment [11]. The microRTS environment was 

designed with rules that mimic fully-fledged RTS 

games, but are of lower dimensionality (e.g., instead of 

the unit being able to move with pixel or coordinate 

system precision, it can only move up, down, left, or 

right for one cell at a time). In our case, its purpose is to 

provide the live game data for the NARM action 

extraction process. Features gathered from the 

microRTS environment and used with the NARM 

action extraction process were: The number of friendly / 

enemy workers / light units / heavy units / ranged units, 

a flag if a friendly base has been threatened, friendly / 

enemy resources left, number of friendly / enemy bases, 

and the number of enemy barracks. The actions used 

were: No action taken (0), move (1), harvest (2), unit 

returns (3), produce (4), and attack location (5). The 

opponent chosen for the study (i.e., its data during 

gameplay were recorded), was the UCT (note: The 

game agent is a part of the microRTS package) with 

default parameters set. The UCT agent played against 

the basic built-in RandomAI. 

 The data used for NARM were gathered from the 

game states across the span of the whole game. The 

mode of operations is such that, in each game state, the 

processing set holds the feature values and opponent 

actions of current and of all the game states before it. In 

each frame, the set is sent to NARM for processing. The 

threshold for the rules from which the actions are 

extracted is, for case study purposes, set to 0.5 

(inclusive of this value). After the NARM process is 
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completed, and the action extraction of the opponent is 

made, the SPM can act on the received information.  

 Figure 4 shows the graph of the recorded data of a 

UCT agent during gameplay throughout the whole 

game. The abscissa axis indicates the consecutive frame 

numbers, while the ordinate axis shows the percentage 

distributions of each action for that specific frame. 

 

Figure 4. Graph showing the action percentage distributions 

across the whole game. 

 In Figure 5, only the percentage data of the action 

attack location (5) was isolated, to show better how the 

UCT agents' attack distribution changes with the 

passing game time. The changes between the highs and 

the lows provide the SPM with very informative data 

about when the opponent is switching game action 

usages, and if units are in heightened danger. Therefore, 

self-preservation measures are needed. 

 

Figure 4. Graph showing the action percentage distribution of 

action attack location (5) across the whole game. 

5 Conclusions 

As proof of concept, the SPM was designed with three 

main goals. First, the module is universal, and can be 

included in every game agent using a modular design. 

Second, the module is simple enough to be implemented 

without much complexity and easily integrated into 

game agents. Third, it should not interfere with an 

active strategy in progress unless the game agent 

explicitly decides to use the module. 

 During initial testing of connecting the SPM with 

action extractions provided by NARM, it was noticed 

that, at the beginning of gameplay, the action extraction 

processing was possible in online mode, while, later on, 

when the sets of game features and actions stacked up, 

the game frame time slices (100 milliseconds) were 

exceeded, and the module operation resembled more 

that of the offline mode. 

 The data gathered on opponent behavior 

demonstrate a diverse range of action variations, as 

illustrated by the fluctuations in the two graphs 

representing agents' behavioral changes throughout the 

game. Overall, such distinct opponent action variations 

are crucial for module gameplay decision-making. With 

that in mind, future work will compare our approach 

with modern algorithms, such as the Policy Proximal 

Optimization (PPO) algorithm [12]. Using PPO, an 

evaluation could study the balance between self-

preservation and other RTS game objectives. The 

feasibility of employing PPO for real-time control of 

specific game units or groups of units will also be 

examined. 
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