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HIDRA-T - transformerski model za
napovedovanje viSine morske gladine

Sea surface height forecasting is critical for timely pre-
diction of coastal flooding and mitigation of is impact on
coastal comminities. Traditional numerical ocean mod-
els are limited in terms of computational cost and accu-
racy, while deep learning models have shown promising
results in this area. However, there is still a need for
more accurate and efficient deep learning architectures
for sea level and storm surge modeling. In this context,
we propose a new deep-learning architecture HIDRA-T
for sea level and storm tide modeling, which is based on
transformers and outperforms both state-of-the-art deep-
learning network designs HIDRAI and HIDRA?2 and two
state-of-the-art numerical ocean models (a NEMO en-
gine with sea level data assimilation and a SCHISM ocean
modeling system), over all sea level bins and all fore-
cast lead times. Compared to its predecessor HIDRA2,
HIDRA-T employs novel transformer-based atmospheric
and sea level encoders, as well as a novel feature fusion
and regression block. HIDRA-T was trained on surface
wind and pressure fields from ECMWF atmospheric en-
semble and on Koper tide gauge observations. Compared
to other models, a consistent superior performance over
all other models is observed in the extreme tail of the sea
level distribution.

1 Introduction

Anthropogenic climate changes are causing a global mean
sea level rise. In part, this reflects in a world-wide coastal
flooding frequency increase and leads to a variety of neg-
ative consequences for coastal communities, civil secur-
ity, and the economy [2]. Shallow semi-enclosed coastal
regional basins like Northern Adriatic (North Central Me-
diterranean Sea) are thus facing growing threats of coastal
inundation and erosion [2], seawater intrusions in fresh-
water reservoirs and are worsening the conditions for mar-
ine traffic. Northern Adriatic ports like Venice, Koper
and Trieste, but also other cultural landmark towns like
Chioggia or Piran, have been — or will be — forced to take
expensive preventive measures to mitigate their exposure.

Local governments and emergency responders thus
require accurate prediction of short-term sea level changes
such as surges, causing floods, to take proactive measures
for protecting communities from flooding. Traditional
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methods [7, 9] are based on elaborate physics models,
which, however, are prone to modeling errors and require
substantial computational resources. Machine learning
models are also computationally intensive to train, how-
ever, the inference is numerically cheap. For instance,
single-point Koper sea level prediction from the neural
network HIDRA?2 [8] is a million times faster than from
the full-basin operational NEMO ocean model [7].

This paper presents HIDRA-T, a novel architecture
for sea level forecasting. The new model extracts relevant
information from different spatial locations in the atmo-
sphere signal and predicts the sea surface height (SSH)
with a three-days horizon at significantly better accuracy
than its predecessor HIDRA?2 [8] as well as two state-of-
the-art physics-based numerical ocean models.

The paper is organized as follows. Section 2 presents
related work, Section 3 details the new HIDRA-T archi-
tecture. Section 4 reports the evaluation of the HIDRA-T
architecture and provides comparisons with the state-of-
the-art numerical ocean models. Conclusions and out-
look are drawn in Section 5.

2 Related Work

The key difficulty of sea level forecasting in the shallow
seas like Adriatic arises from high sensitivity of total sea
level to the phase lag between the gravitationally gen-
erated tides (independent from meteorological forcing)
and meteorologically generated basin seiches (independ-
ent from gravitational forcing). This requires the simula-
tion of complex models covering the entire basin [7].

To avoid the high numeric cost of ensemble sea level
forecasting, computationally efficient machine-learning-
based ensemble models have recently been explored [12].
The early machine-learning approaches [4] were based
on classic machine learning models such as support vec-
tor machines with radial basis function kernels. Authors
of [5] used long short-term memory (LSTM) networks to-
gether with several atmospheric variables to improve one-
hour prediction into the future but did not expand the pre-
diction horizon. Authors of [1] predicted further in time
by applying a combination of LSTMs and convolutional
neural networks, but at a very coarse level. Autoregress-
ive neural networks were considered in [3] to increase the
temporal resolution and the prediction horizon.

In 2021, a convolutional neural network HIDRA1 [12]
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Figure 1: The HIDRA-T architecture. The Atmospheric Encoder and Sea Level Encoder embed the input data with a transformer.
Both atmospheric and sea level features are then fused with the past 72 h SSH and regressed into the final SSH predictions by the

Fusion-Regression Block.

with a specialized architecture to utilize atmospheric data,
sea surface heights and astronomic tides was proposed.
But while HIDRA1 performed favorably in comparison
to the NEMO [7] model used in that study, it failed to beat
the NEMO setup at very high and very low ends of sea
level distributions. Recently, we proposed a continuation
of HIDRA1, named HIDRA?2 [8]. HIDRA?2 differs from
its predecessor in many ways, HIDRA?2 uses 1D convo-
lutional layer to fuse information from different temporal
and spatial positions of the atmosphere, enabling weights
sharing between different prediction points. HIDRA1 pre-
dicts the difference between sea level height and the as-
tronomic tide, while HIDRA2 directly predicts the full
sea level height. This and other improvements enabled
HIDRAZ2 to outperform HIDRAI at high sea levels for
over 25 %. Due to the generalization capabilities of HI-
DRAZ2, it is also a foundation of HIDRA-T architecture.

Sequence-based models represent an attractive archi-
tectural choice for the sea level modeling as the input
and output data are sequential. Transformers [10] showed
dominance in sequence-based tasks, firstly in natural lan-
guage processing tasks as text classification, machine tra-
nslation, and question answering, and have also become
the dominant methodology in computer vision. Since the
atmospheric data can be interpreted as a sequence of im-
ages, we utilize the transformers in HIDRA-T to encode
atmospheric as well as sea level input data to get con-
textually rich features, which are then used to predict sea
level within the prediction horizon.

3 HIDRA-T

HIDRA-T architecture is shown in Figure 1. The input
data is encoded by two encoders. The wind and pres-
sure sequences are processed by the Atmospheric En-
coder (Section 3.1), while the sea level and the tidal signal
are encoded by the Sea Level Encoder (Section 3.2). The
outputs of both encoders are fused with the past 72 h SSH
and regressed into the final SSH hourly predictions for the
future 72 h by the Fusion-Regression Block (Section 3.3).
A single prediction run of HIDRA-T model creates a 72-
hour sea level forecast. Although HIDRA-T would be
capable of forecasting further into the future with more
atmospheric forecasts, we have decided to maintain the
72 h forecast horizon to ensure that the model’s perform-
ance remains comparable to that of numerical models that
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also produce a 72 h forecast. The aforementioned indi-
vidual blocks are detailed in the following subsections.
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Figure 2: Transformer encoder layer used for encoding atmo-
spheric and sea level data [11]. Tokens are firstly processed by
self attention, then by two fully connected layers with 128 and
64 output features (denoted by n). ReLU, drop-out, skip con-
nections and layer normalization are applied as shown.

3.1 Atmospheric Encoder

The atmospheric data for the Adriatic basin at a given
time-step is represented by a 57 x 73 spatial grid with
three channels, one for pressure and two for wind. HID-
RA-T uses only coarse spatial resolution of atmospheric
data, so the data is first downsampled to 9 x 12 grid by
averaging before passing it to the Atmospheric encoder.

The Atmospheric Encoder is composed of two stages.
In the first stage, time independent features are extrac-
ted from the atmospheric data. The input sequence of
96 h (the past 24 h and future 72 h) is firstly divided into
24 groups of four consecutive hours, which are then pro-
cessed separately. Each group is processed by the trans-
former encoder [11] (see Figure 2) as follows. Each spa-
tial position represents one token, which is firstly pro-
jected into a 64-dimensional space by a fully connected
layer. Fixed spatial positional encoding [11] is added in
the form of sine and cosine functions of different fre-
quencies [11]. Then, two layers of single-head self atten-
tion and feed-forward network are applied. A drop-out
layer with drop-out rate 0.9 is added to both self attention
and feed-forward network. As the final step of the first
stage, spatial dimensionality is reduced to 1 X 1 x 64 by
a fully connected layer, outputting a single vector. Note,
however, that 24 independent passes, corresponding to 24
groups of four consecutive hours, are performed in paral-
lel for the entire atmospheric input sequence, so the final
output has dimensionality 24 x 64.

The second stage of the Atmospheric Encoder ex-
tracts the temporal atmospheric features by considering



Table 1: Performance of HIDRA-T, HIDRA1 [12], HIDRAZ2 [8], NEMO [7] and SCHISM [9] over all sea level bins (the Overall
columns) and only during storm tide events (Storm tide events columns). Tidal forecast is included for reference.

Overall Storm tide events

MAE RMSE Bias Acc | MAE RMSE Bias Acc R P F1

[cm] [cm] [cm] [%] | [cm] [cm] [cm] [%] [%] [%] [%]

Tide 13.82 18.86 -5.13 47.45 | 55.75 59.45 -55.75 0.00 0.00 / /
NEMO 6.54 852 -1.23 79.14 | 13.03 17.09 -11.24 49.68 63.58 100.00 77.73
SCHISM 5.57 750 0.20 85.06 | 11.04 14.70 -6.19 57.63 178.81 89.47 83.80
HIDRA1 4.72 6.73 -026 90.04 | 12.95 17.65 -10.66 53.76 74.17 94.12 82.96
HIDRA2 4.12 582 021 92.89 9.77 14.07 -5.99 6452 84.11 91.37 87.59
HIDRA-T 4.11 5.83 0.28 92.88 9.48 13.73 -5.85 6645 86.49 92.09 89.20

the wind-pressure features extracted by the first stage.
Two transformer encoder layers (see Figure 2) are applied
to the 24 tokens of size 64, fusing information from dif-
ferent time points. Finally, number of features in each
token is halved from 64 to 32 by a fully connected layer,
and the output is reshaped into the final 1 x 768 dimen-
sional atmospheric vector v, .

3.2 Sea Level Encoder

The Sea Level Encoder takes the past 72 h SSH measure-
ments and past 72 h and future 72 h of tide (tidal fore-
casts) as the input. The inputs are stacked into a single
144 x 2 tensor, where the unknown future SSH values are
set to zero. The input tensor is embedded using a single
1D convolution with kernel size 2 x 3, stride 2 and out-
put dimension for each time point of 64. The operation
produces 71 tokens, which are processed with two trans-
former encoder layers (see Figure 2), producing a 71 x 64
output tensor. Dimensionality of the output is reduced in
two ways, firstly, number of features is reduced from 64
to 16 by a fully connected network, then the number of
tokens is also reduced from 71 to 16 by another fully con-
nected layer. The output is then reshaped into the final
1 x 256 dimensional sea level encoding vector v.

3.3 Fusion-Regression Block

The atmospheric embeddings v, and sea-level embed-
dings v from the Atmospheric and Sea Level Encoders
are concatenated and mixed by a fully connected layer,
reducing the dimensionality from 1024 to 512. The ob-
tained 512-dimensional domain context feature vector th-
us contains rich atmospheric and sea-surface height in-
formation from all time points and all parts of the input
domain.

While the encoding and mixing operations extract the
domain context, the explicit surface height information
might not be well retained in the extracted feature vec-
tor. To re-inject this information, the obtained domain
context feature vector is concatenated with the timeseries
of past observed SSH before passing to the final regres-
sion block. The latter is composed of two fully connec-
ted layers with 584 units, SELU activations and residual
connections, followed by a fully connected layer with 72
outputs for the 72 h prediction horizon.
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4 Experimental Results

4.1 Training and Evaluation Dataset

We used the same training and evaluation datasets as in
HIDRAZ? [8]. Training is performed using the data from
2006-2018. The evaluation dataset for all models is sep-
arate from the training dataset and consists of ECMWF
atmospheric forecasts [6] from Adriatic and Koper water
levels between June 01, 2019 and December 31, 2020.
This period was chosen due to challenging conditions
and unusually high flood occurrence. The ECMWF fore-
casts contain 50 ensemble members with a lead time of
three days. The input to HIDRA?2 during training is a
single forecast, obtained by averaging forecasts from all
ensemble members. Floods account for 0.45 % of the
training dataset and 1.1 % of the test dataset.

4.2 Implementation Details

HIDRA-T is implemented in PyTorch and is trained end-
to-end using mean squared error (MSE) loss between the
predictions and the ground truth. We train the model us-
ing the AdamW optimizer with standard parameter values
(learning rate 3e—>b, and the running average damping
parameters 81 = 0.9 and 83 = 0.999), and apply the co-
sine annealing learning schedule to gradually reduce the
learning rate during training by a factor 10. The training
batch size is set to 256 data samples, and the model is
trained for 60 epochs. Training takes approximately 1.5
hours on a single computer with NVIDIA Geforce RTX
2080 TI graphics card, while the inference of a single 72 h
prediction for one member of the atmospheric ensemble
takes only 4 ms.

4.3 SSH Forecast Performance

The overall prediction performance and performance re-
stricted to storm events are shown in Table 1, a single
forecast example is shown in Figure 3. HIDRA-T out-
performs HIDRA1 [12], NEMO [7] as well as SCHI-
SM [9] overall as well as during storms, yielding a lower
MAE/RMSE and higher accuracy. While HIDRA1 achi-
eves a lower bias, its RMSE/MAE are substantially higher,
HIDRA-T outperforms HIDRA1 in MAE by 12.9 % over-
all, and by 26.8 % during the storm tide events. HIDRA-
T is comparable to HIDRA2 [8] in overall test data, but
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Figure 3: An example of a single forecast on a flooding event
from December 2020 by HIDRA-T, HIDRA1 [12], NEMO [7]
and SCHISM [9]. The coastal flood threshold is marked with a
horizontal red line. Semi-transparent regions depict 20 envel-
ope of each HIDRA ensemble, where o is standard deviation of
ensemble predictions at each time point.

significantly outperforms it on storm surges in all meas-
ures.

NEMO achieves the highest precision of flood detec-
tion (P = 100 %), meaning that all detected floods are
true positives. But while all NEMO’s predicted floods
were true, not all floods were predicted, resulting in its
low recall of R = 63.58 %. A similar situation is ob-
served for HIDRA1. The recalls for these two methods
(NEMO: 63.58 % and HIDRA1: 74.17 %) are substan-
tially lower than that of HIDRA-T (R = 86.49 %), which
detects many more floods with fewer false negatives.

The excellent trade-off between the precision and re-
call of HIDRA-T is reflected in its F1 score (89.20 %),
which is substantially higher than that of NEMO (77.73
%), HIDRAT1 (82.96 %), SCHISM (83.80 %), or the next
best HIDRA2 (87.59 %). This highlights HIDRA-T’s ex-
ceptional ability to accurately predict sea surface heights,
including extreme events such as high and low tides. In
fact, HIDRA-T is next to HIDRA?2 the first machine learn-
ing model to outperform numerical models in predicting
extreme events, demonstrating its potential for improving
coastal warning systems.

5 Conclusions

We presented a sea level prediction model HIDRA-T. Its
performance is benchmarked against the current state-of-
the-art Mediterranean forecasting setup of NEMO ocean
model [7] (available as part of Copernicus Marine Ser-
vice) and against a multi-decadal reanalysis run of the
SCHISM model [9] on an unstructured grid with very
high coastal resolution. We demonstrate that HIDRA-T

outperforms HIDRA?2 [8] as well as numerical ocean mod-

els across extreme sea level bins. With its high recall,
HIDRA-T is expected to detect more extreme floods than
any other model, making it a valuable tool for opera-
tional services. In addition, HIDRA-T is at inference
much faster than numerical models as it can run on a per-
sonal computer, whereas numerical models require sev-
eral hours on a supercomputer.

Overall, the development of HIDRA-T represents a
significant milestone in the field of sea surface height pre-
diction and provides a highly accurate and cost-effective
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alternative to traditional numerical models. As the ef-
fects of climate change are felt around the world, accurate
sea level height prediction models will play an increas-
ingly important role in protecting vulnerable coastal com-
munities. With the promise of models like HIDRA-T, we
can hope to have the tools we need to meet this challenge.
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