
ERK'2023, Portorož, 153-156 153

Overview of lossless audio codecs 

Luka Železnik1, Damjan Strnad1, Bogdan Lipuš1, Josef Kohout2, David Podgorelec1 

1 University of Maribor, Faculty of Electrical Engineering and Computer Science 
 2 University of West Bohemia, Faculty of Applied Sciences 

E-mail: luka.zeleznik@student.um.si 
 

 

Overview of lossless audio codecs  

In this paper, we overview existing lossless audio 

formats, their way of predicting audio samples and 

encoding differences between the samples and predicted 
values. The considered algorithms are classical FLAC, 

MPEG-4 ALS, and neural net enhanced Monkey's Audio 

and LINNE. Then we test and compare the compactness, 

encoding, and decoding times of mentioned codecs using 

various types of audio. 

1 Introduction  

Data compression is currently changing with 

advancements in artificial intelligence. Previous mesh-

based standard procedures are being updated with novel 

approaches that push data compactness further than ever. 

Lossless audio is the leading type of compression of this 

change in approach, for its simple and intuitive way of 

translating the problem to a neural network (NN). 
 Lossless audio compression is also becoming more 

popular with the wide adoption of high-speed audio 

streaming over the internet. That enables larger but 

higher quality, lossless music and other forms of audio to 

reach more and more listeners. With increasing 

awareness of potencial data loss, the demand for data 

backup services has increased, for which compact 

lossless compression is required. 

 In this overview, we review traditional and novel 

lossless audio compression methods and compare their 

compactness, encoding, and decoding times.  

2 FLAC 

Free Lossless Audio Codec (FLAC) [1] started as a 

project by Josh Coalson in 1999 as a free and completely 

open alternative to the lossless audio codecs of the day. 

Main ideas were taken from the now deprecated 

SHORTEN [2] algorithm but were expanded and made 

more robust for different audio consumption ways, 

mainly streaming. FLAC is now considered the standard 

for lossless audio compression.   

 In 2011 Xiph.Org Foundation1 took stewardship over 

the open-source project, and now the source code is 

available on GitHub2. 

 But despite the takeover, the goals of the FLAC codec 
remain the same. None of the used algorithms can have 

patents, FLAC must stay completely lossless (lossy 

compression shouldn't even be an option, even encoding 

floating point samples should be excluded), and the 

format should be error resistant, streamable, with flexible 

 
1 https://xiph.org/ 

metadata, and should support fast sample-accurate 

seeking. But most importantly decoding must be done in 

real time even on modest hardware. 

2.1 Sample prediction 

In all modern audio codecs a mechanism called blocks is 

used so that decoding can be done in real time even for 

long audio streams. The default block size for audio with 

a sampling rate of 44.1 kHz is 4608 samples. Blocks are 

comprised of as many subblocks as there are channels. 

So, a typical block of stereo audio has 2*4608 = 9216 

samples. Each block has an 8-bit cyclic redundancy 

check (CRC) code for redundancy. 

 After the audio is partitioned into blocks, it is 

decorrelated by default, which can be specified as a codec 

parameter. Left and right channels of the stereo audio 
stream are typically similar, so FLAC exploits that inter-

channel correlation. New channels, called middle and 

side, are calculated so that middle = (left + right)/2 and 

side = left – right. Effectively we are encoding the 

average in the middle and details in the side channel, as 

seen in Haar wavelet transform [3]. When decoding 

inverse transformation is performed. 

 As most modern lossless codecs, FLAC uses 

predictive approximation functions 𝑓(𝑡) of the sample 

𝑠(𝑡) and encodes the residual 𝑒(𝑡) as a part of the data 
stream, as seen in equation (1).  
 

𝑒(𝑡) = 𝑠(𝑡) − 𝑓(𝑡) (1)  
 

 FLAC employs four such functions, though only the 

last two provide actual compression [4]: 

• Verbatim: The prediction is a zero audio 

sample. This means that the residual is the 

actual sample. This prediction doesn't use 

variable length codes for compression. 

• Constant: This encodes digital silence (a stream 

of constant samples). Such subblocks are 

compressed using run-length encoding. 

• Fixed linear predictor: A simple polynomial 

predictor of orders 0, 1, 2, 3, or 4. Side 

information of 3 bits is included to determine 

which order is used. The verbatim prediction is 

effectively a zeroth-order polynomial 

prediction, but here the residual is compressed. 

We can see five possible predictors ŝ below in 

equation (2), where 𝑠(𝑡 −  𝑥) are previous 

samples in the audio stream: 
 

0. ŝ0(𝑡) = 0, 
1. ŝ1(𝑡) = 𝑠(𝑡 − 1), 
2. ŝ2(𝑡) = 2𝑠(𝑡 − 1) − 𝑠(𝑡 − 2), 

2 https://github.com/xiph/flac 

(2) 



154

 

3. ŝ3(𝑡) = 3𝑠(𝑡 − 1) − 3𝑠(𝑡 − 2) +
𝑠(𝑡 − 3), 

4. ŝ4(𝑡) = 4𝑠(𝑡 − 1) − 6𝑠(𝑡 − 2) +
4𝑠(𝑡 − 3) − 𝑠(𝑡 − 4). 

 

• FIR Linear prediction: A more sophisticated 

method that is also referred to as general linear 

predictive coding (LPC) [5] (see section 2.2). 
 

 Residuals are encoded using Rice codes [8]. These 

descendants of Golomb codes [9] are variable-length 
codes (VLC) for encoding integers. Rice codes are very 

fast to encode and decode, and optimal for the Laplace 

distribution [10], which is expected for residuals from 

this type of prediction. 

2.2 Linear predictive coding 

Linear predictive coding [5] is the primary prediction 
method used for FLAC. It is somewhat slower than a 

fixed linear predictor but usually results in 5-10% smaller 

files, depending on the concrete audio character. 

Maximum polynomial order can be set as a parameter 

within the range of 1 and 32 – larger number grants better 

predictions but slows the encoder. Generally, increasing 

the maximum order over 9 brings diminishing returns [4]. 

 The basic approach to finding the best polynomial fit 

is finding a set of predictor coefficients to minimize the 

mean-squared prediction error over a short waveform 

segment [5].  
 To find an optimal coefficient for the polynomial fit 

of sampled audio (𝛼1 . . . 𝛼𝑝), a system of p equations (3) 

must be solved, where ϕ are Pearson autocorrelation 

coefficients [6] of the system. The reference encoder uses 

Levinson-Durbin recursion [7] to solve this system, but 

other methods can also be used. 
 

 
 

 The Levinson–Durbin algorithm determines by 
recursion the optimum ith-order predictor from the 

optimum (i − 1)th-order predictor, so, as part of the 

process, all optimal order predictors, from zeroth to p-th 

order, are calculated.  

3 MPEG-4 Audio Lossless Coding (ALS) 

MPEG-4 ALS [11] is a lossless audio standard adopted 

by the MPEG committee first and later by ISO. Because 

of this, its formal designation is ISO/IEC 14496-

3:2005/Amd 2:2006 international standard [4].  

 As a competitor of FLAC, MPEG-4 ALS also uses 

inter-channel decorrelation (see five static linear 

predictors in equation (1) and linear prediction codes in 

section 2.2), even though it is expanded up to 216 

channels. The innovations are a novel long-term 
predictor, random access frames, a different option for 

encoding residuals, and support of IEEE 32-bit floating 

point [12] samples. 

 Most audio signals have a basic expected frequency, 

called the fundamental frequency. In music, it  coincides 

with the musical scale the song is written in and depends 

on the instruments, and in speech, on the pronunciation 

of phonemes. So, over a short audio excerpt, it can be 

predicted that some sine waves will be more prevalent 

than others. We can also expect multiples of the 

fundamental frequency, called harmonics. They 

contribute to the richness of the audio to our ears [13]. 

 A long-term predictor (LTP) uses this correlation to 

correct a short-term LPC (section 2.2) prediction, as seen 

in equation (4). The ŝ(𝑡) is a short-term prediction, 𝛾 are 

five different quantized gain values, and r is a lag. It is 

calculated based on the fundamental frequency and 

sampling rate. For example, musical note C has a 

frequency of 261 Hz. So an audio recording sampled at 

48 kHz can expect some correlation (lag) at 48,000/261 

= 184 audio samples [4]. 
 

          𝜀(𝑡) = ŝ(𝑡) − ∑ 𝛾𝑟+𝑗

2

𝑗=−2

∙ ŝ(𝑡 −  𝑟 + 𝑗)           (4) 

 

 Random access frames are another quality-of-life 

improvement. A practical audio codec should allow users 

to skip forward or backwards in an audio stream at their 
leisure. Usually, an audio frame (a user-controlled 

number of samples) depends on previous frames in a 

sequence. This approach, called progressive predictions 

[4], is used so predictions can improve with more data 

about the audio stream. The random access frames can be 

decompressed without any context and effectively restart 

the progressive prediction. 

 Residuals are then encoded with one of two methods. 

One option is to use Golomb-Rice codes. The first step to 

creating this VLC is transforming residuals into non-

negative integers with equation (5). Then the residuals 
are encoded as in FLAC, with an exception that 

GolombRice codes only support positive integers per (5). 
 

                     𝑟′ =  {
2𝑟                𝑖𝑓 𝑟 ≥ 0
−2𝑟 −  1    𝑖𝑓 𝑟 <  0

                  (5) 
 

 The other option is a hybrid method using block 

Gilbert-Moore (BGM) [14], Golomb-Rice, and fixed 

length codes. It achieves a better compression rate on 

account of better efficiency for encoding small residuals, 

but is about 15-25% slower. A central region between 

[−𝑥, 𝑥] is encoded using BGM and the tail of the 

distribution is using Golomb-Rice codes. 

4 Monkey's Audio 

Monkey's Audio [15] is a well known NN-based 

algorithm and file format for lossless audio data 

compression. Unlike FLAC, Monkey's audio is not open 

source. It is freeware, and its software development kit 

(SDK) can be used for applications free of charge, but the 

distribution of modified versions is not allowed. This 

codec typically performs slightly better than FLAC (see 

the experiments in Section 6), but the cost is a dramatic 

increase in hardware requirements, especially on the 

decoding end.  

(3) 



155

 The encoder is comprised of three steps. Firstly, the 

same process of inter-channel decorrelation is performed, 

as described in 2.1. The next step is the prediction. 
Monkey's audio uses a fixed-first-order predictor 

followed by multiple adaptive offset filters. Then the 

results are filtered up to 3 times using convolutional NN 

filters, dependent on the compression level, of which five 

exist. A high compression rate is achieved via sample-

by-sample stochastic gradient descent [16]. Lastly, 

residuals are compressed using a range-style adaptive 

arithmetic encoder [4, 17]. 

5 LINNE 

Linear-predictive NN encoder (LINNE) [16] is a novel 

and relatively unknown approach to audio compression 

that uses NN processing as a main predictor for the 

algorithm.  
 Firstly, the channels are decorrelated per section 2.1. 

Then multiple first-order LPC filters are applied to 

simplify and boost the NN's performance.  
 

 
 

 This codec uses a convolution neural network (CNN) 

[18], which inputs a 2D matrix, not a 1D vector that can 

easily be interpreted as a block of audio. Equation (6) 

shows the transformation of an L-sized block with order 

p, where h is a division coefficient vector for that layer. 

 Then the popular 34 layer CNN ResNet [19] is used 

for prediction. After adjusting the weights they are 

quantized to an 8-bit signed integer, which results in 
negligible predictive performance degradation. Without 

this step, the coefficients represent a significant amount 

of data at around 0.73% of the data stream. 

 Finally, the residuals are encoded using recursive 

Golomb-Rice codes [4], more suited for heavily tailed 

distribution than original Golomb-Rice codes. 

6 Comparison 

 The codecs were tested with 61 previously 

uncompressed 16-bit PCM stereo audio files from 

different genres, including electronic, folk, pop, rock, 

metal, and film soundtracks. We also tested two excerpts 

from audiobooks and audio from two films, which were 
previously compressed with lossy methods. The 

respective versions of the codecs and used parameter 

flags were: 

• FLAC 1.3.4 (--best), 

• MPEG-4 Audio Lossless Coding (ALS), 

Reference Model Codec Version 23 (-b), 

• Monkey's Audio 10.16 (-c4000), 

• LINNE 0.0.2 (-m 0). 

 The results were collected on a computer with an Intel 

Core i5-8300H processor and 8 GB of memory. 

 Figure 1 shows the encoding times of all 65 audio 

samples depending on their length. We can see that they 

are very predictably following a linear trend, with 
LINNE being the most demanding. Note that both axes 

are on a logarithmic scale for clarity. On the contrary 

Figure 2 shows decoding times, and we encounter no 

such predictability. FLAC is the fastest codec in both 

figures. 
 

 

Figure 1: Encoding times depending on audio length 

 

Figure 2: Decoding times depending on audio length 

 Table 1 shows the tested samples' average 

compression ratios, compression, and decompression 

times. Compression ratios are calculated with 𝐶𝑅 =

 
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
, so a higher ratio indicates better 

compression. 

Table 1: Average results 

 Compression 

ratio 

Encode 

time (s) 

Decode 

time (s) 

FLAC 

MPEG-4 ALS 

Monkey's Audio 

LINNE 

1.794 

1.830 

1.865 

1.815 

7.94 

16.44 

14.30 

79.27 

7.99 

13.01 

14.20 

9.98 
  

Generally, we can expect the best compression from 

Monkey's Audio. The exceptions are audiobooks and 

podcasts, because Monkey's Audio prediction methods 

are not well suited for encoding speech. This 

compactness though comes at a cost of encoding and 

decoding times. Even with this caveat, we can deduce 
that Monkey's Audio is still the most appropriate codec 

for archiving large amounts of audio [16]. 

(6) 



156

 

 MPEG4-ALS decoding and encoding times were also 

relatively slow (Figure 1, Figure 2), with above-average 

compression ratios. Notably, here we used its improved 

residual coding, which should slow down the encoder by 

15-25% but achieve better compression [11]. We 

observed no such difference in performance but a worse 

compression ratio using Rice codes only. 

 The newcomer prototype LINNE encoder boasts a 

fast decoding time, at least compared to other NN 

alternatives, but very slow encoding (Figure 1). Because 

of that, we used the fastest encoding option because the 
codec is by far the most resource intensive. The highest 

encoding mode (flag -m 7) increases (Table 1) 

compression times tenfold, decoding times by 50%, and 

improves compression ratios by less than one per cent. 

But those are still worse than Monkey's Audio, but now 

with even more untenable compression times. 

 Lastly, FLAC compressed files significantly the 

worst. It justifies its wide adoption by end users with 

solid encoding and decoding times, as is the goal of its 

creators. But for archiving, better options exist.  

7 Conclusion 

Neural net enhanced codec Monkey's Audio reigns 
supreme with excellent encoding but long decoding 

times. LINNE tries to bridge the gap in terms of 

decompression times, but loses out in terms of 

compactness. 

 For the average user, classical encoders, which use 

linear predictive coding, are still popular because of their 

wide adoption, hardware, and software support. 

Especially FLAC's simple design and openness 

contribute to its success. But codecs based on new 

advances in artificial intelligence have a future in 

environments with more computing power. On a large 

scale, we can expect a sizable gain in efficiency storing 
lossless audio data, when encoding times are not as 

important. Decoding times are typically more significant, 

but their value is diminished when audio is being stored 

in a backup service. Currently, Monkey's Audio is still 

the preferred choice with the best compromise of 

encoding/decoding times and an attractive, although not 

completely open source, license.  
 

Acknowledgement 

The project (Data compression paradigm based on 

omitting self-evident information, J2-4458) was financed 

by Slovenian Research and Innovation Agency and 

Czech Science Foundation (project No. 23-04622L) from 

the state budget. 
 

References 

[1] J. Coalson, “FLAC - Free Lossless Audio Codec”. 

Accessed: Jun. 29, 2022. [Online]. 

https://xiph.org/flac/ 

[2] T. Robinson, “SHORTEN: Simple lossless and 
near-lossless waveform compression”. University 

of Cambridge, Department of Engineering, 1994. 

[3] D. Zhang and D. Zhang, “Wavelet transform”, 

Fundamentals of image data mining: Analysis, 

Features, Classification and Retrieval, pp. 35–44, 

2019. 

[4] D. Salomon and G. Motta, Handbook of Data 

Compression, 5th ed. Springer Publishing 

Company, Incorporated, 2009. 

[5] L. R. Rabiner and R. W. Schafer, “Introduction to 

Digital Speech Processing,” Foundations and 

Trends® in Signal Processing, vol. 1, no. 1–2, pp. 

1–194, 2007, doi: 10.1561/2000000001.  
[6] I. Cohen et al., “Pearson correlation coefficient,” 

Noise reduction in speech processing, pp. 1–4, 

2009. 

[7] B. Iser, W. Minker, and G. Schmidt, Bandwidth 

extension of speech signals. Springer, 2008.  

[8] R. F. Rice, “Some practical universal noiseless 

coding techniques,” 1979. 

[9] S. Golomb, “Run-length encodings (Corresp.),” 

IEEE Transactions on Information Theory, vol. 12, 

no. 3, pp. 399–401, 1966, doi: 

10.1109/TIT.1966.1053907. 
[10] W. J. Reed, “The normal-Laplace distribution and 

its relatives,” in Advances in distribution theory, 

order statistics, and inference, Springer, 2006, pp. 

61–74. 

[11] T. Liebchen, “MPEG-4 ALS – The Standard for 

Lossless Audio Coding,” Journal of the the 

Acoustical Society of Korea, vol. 28, no. 7, pp. 

618–629, Oct. 2009. 

[12] “IEEE Standard for Binary Floating-Point 

Arithmetic,” ANSI/IEEE Std 754-1985, pp. 1–20, 

1985, doi: 10.1109/IEEESTD.1985.82928. 

[13] J. H. Ginsberg (auth.), Acoustics-A Textbook for 
Engineers and Physicists: Volume I: 

Fundamentals, 1st ed. Springer International 

Publishing, 2018. 

[14] E. N. Gilbert and E. F. Moore, “Variable-Length 

Binary Encodings,” Bell System Technical 

Journal, vol. 38, no. 4, pp. 933–967, 1959. 

[15] M. T. Ashland, “Monkey’s Audio-a fast and 

powerful lossless audio compressor”. 2011. 

[16] T. Mineo and H. Shouno, “A lossless audio codec 

based on hierarchical residual prediction,” in 2022 

Asia-Pacific Signal and Information Processing 
Association Annual Summit and Conference 

(APSIPA ASC), 2022, pp. 123–130. 

[17] M. Schindler, “A fast renormalisation for 

arithmetic coding,” in Data Compression 

Conference, IEEE Computer Society, 1998, pp. 

0572–0572. 

[18] M. A. Nielsen, Neural networks and deep learning, 

vol. 25. Determination press San Francisco, CA, 

USA, 2015. 

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep 

residual learning for image recognition,” in 

Proceedings of the IEEE conference on computer 
vision and pattern recognition, 2016, pp. 770–778. 

 


