Genetic Algorithm for Drawing Undirected
Graph’s Layouts

Ekaterina Bochvaroska
Faculty of Mathematics, Natural
Sciences and Information Technologies
University of Primorska
Glagoljska ulica 8,

SI-6000 Koper, Slovenia
89221049 @student.upr.si

Abstract—In this paper, we present an empirical ap-
proach to graph layout improvement using a genetic
algorithm, leveraging the power of parallel computing
to enhance performance and scalability. We develop
an iterative population-based evolutionary search for a
random graph layout that combines selections, crossover,
and mutation to obtain the best possible outlay of graphs
concerning multiple aesthetic criteria. We evaluate our ap-
proach using a complete evaluation pipeline and compare
the results with the ForceAtlas 2 algorithm. [1] Traditional
graph topology algorithms typically suffer from degraded
performance when dealing with large graphs but gener-
ally produce better results. Thus, using genetic algorithms
might be preferable in large networks, where the need
for performance is prioritized above the requirement for
a detailed visual inspection of the resulting graph. The
evolutionary algorithm is guided by a fitness function
based on edge-crossing minimization, node distribution,
and overall visual clarity. Finally, absent an objective
method for measuring how appealing topologies are to
the human eye, we provide a visual comparison between
our results and commonly used graph layout algorithms.

I. INTRODUCTION

When analyzing networks and visualizing data, it’s
crucial to create appealing graph layouts and discover
attractive topologies. Tutte [2], a pioneer in the field of
graph drawing, laid the groundwork for creating visu-
ally understandable representations of complex graphs.
A well-designed graph provides both a precise and
visually appealing representation of data.

Relying on his work Force-directed layout algo-
rithms [1] aim to position the nodes dynamically and
apply forces, hence reflecting the structure and rela-
tionships making it easier to find patterns and symme-
tries. However, these force-directed layouts often hit
lower local minima quickly, as well as have a high
running time. In contrast to this, genetic algorithms
(GA) use more direct and adaptive methods to solve
a wide range of optimization problems, making them
widely popular. They are flexible and can be applied
in many different scenarios without requiring specific
assumptions about the problem. This work addresses
the limitations of conventional methods by using a
(GA) approach to improve graph representations. This
approach not only aims for better optimization but

ERK'2024, Portoroz, 436-439 436

Aleksandar ToSi¢
Faculty of Mathematics, Natural
Sciences and Information Technologies
University of Primorska
Glagoljska ulica 8,
SI-6000 Koper, Slovenia
Innorenew CoE
Izola, Slovenia
aleksandar.tosic @upr.si

also ensures faster processing, providing more balanced
and visually appealing graphs that can handle larger
datasets efficiently, demonstrating the potential of this
algorithm in tackling such intricate problems.

Early work on the topic was introduced by "TimGA:
A Genetic Algorithm for Drawing Undirected Graphs”
[3]. In complement, TimGA proposes a genetic al-
gorithm that is tailored for the layout of undirected
graphs, which takes into consideration important aes-
thetic criteria such as minimizing edge crossings while
enforcing an even distribution of node positions and
reducing-edge length deviation [4]. Using a genetic
algorithm, we seek to refine graph layouts until they
are clear and visually appealing. We begin the process
with a randomly generated graph, mimicking natural
evolution in generating the initial population of graphs,
which progressively evolved with selection, crossover,
and mutation. A key component here is the quality of
a graph layout, which can be evaluated by measuring
different graph properties such as the number of edge
crossings or how evenly the nodes are positioned across
the displaying surface. As a result, the output layouts of
the graphs are simplified, which again puts more em-
phasis on the importance of understanding the complex
data. In addition, aiming to provide a global measure
of the progress, we used Force Atlas 2 algorithm [1] to
estimate the progress of the initial graph in comparison
to the outcomes of (GA), serving as a visual reference
to determine if any improvement has been achieved.

II. IMPLEMENTATION

In this section, we explain the genetic algorithm’s
functionality, its implementation for this project, and
the methodology used to calculate the fitness function.
Our approach is inspired by the principles of natural se-
lection and genetics, we iteratively evolve a population
of solutions to optimize graph layouts.

A. Overview of the Genetic Algorithm

The genetic algorithm follows these steps:

1) Initialization: We begin with a randomly gen-
erated graph based on user-defined sizes of the
edge set (|F|) and vertex set (|V]), represented

by array lists. The initial population of graph
individuals is created within the specified panel
size, which we fixed to 1000x1000.

2) Fitness Evaluation: Evaluate each graph’s fitness
function score based on criteria such as minimiz-
ing edge crossings and evenly distributing nodes.
Computationally this is the most expensive part
of the algorithm.

3) Selection: Like nature employs Darwinism [5],
we select the fittest layouts, without employing
any changes -elitism [6] to serve as parents’
layouts to the next generation to ensure the best
solutions are preserved.

4) Crossover: By combining pairs of parent layouts
to create new graphs, we introduce variations in
the graph structure.

5) Mutation: To preserve genetic diversity, we in-
troduce random changes to certain layouts, simi-
lar to how natural variation is essential in evolu-
tionary processes.

6) Termination: Repeating the process until a stop-
ping condition is met, such as reaching a maxi-
mum number of generations.

B. Fitness Function Calculation

The fitness function serves as a compass, guiding
through the optimization journey. It evaluates how well
an individual graph layout meets the desired criteria,
specifically, it defines the quality of the potential so-
lution. Evaluating through the whole population each
graph receives a unique fitness score based on certain
properties. Particularly as the algorithm evolves through
multiple generations, the fitness function guides the
selection of layouts for further improvement where it
influences which solutions survive, reproduce, and con-
tribute to the next iterations. Hence the fitness function
consists of several components each contributing to
finding the optimal solution:

1) Minimum Distance Neighbour Sum = A: This
component evaluates the sum of the minimum distances
between each node and its nearest neighbor, aiming
to achieve an even distribution of nodes and reduce
clustering within the graph layout. Its high values
indicate that nodes are well-separated.

A= Z min d(i,7) (D)

] Eneighbors(7)

where d(i,j) is the Euclidean distance between
nodes ¢ and j, and N is the total number of nodes.

2) Node Spread = S: This term further distributes
nodes by taking into account the number of nodes and
the square of the minimum distance between nodes,
promoting a wider spread to improve layout clarity. [7]

S = i x N x (minD)? 2)

where minD is the Minimum Node Distance

437

3) Edge Length Deviation © : This term measures
the deviation of edge lengths from an optimal edge
length, which is the smallest edge length found overall
in the graph structure to ensure a balanced and symmet-
ric graph layout. [4]Further this value is increased by 5
units, which will again assist in spreading the edges
to more even lengths across the graph. This avoids
very long or very short edges and gives a much more
uniform and aesthetically pleasing layout. By doing so,
the lengths of the edges become more consistent, hence
reducing clutter and increasing clarity in the graph.

=75 2 ©

where d(e) is the length of edge e, p is the Optimal
Edge length and |E| is the total number of edges.

4) Edge Crossings = X : Edge crossings refer to
the number of intersections between edges in a graph
layout. Minimizing edge crossings is essential for im-
proving the visual clarity of the graphs’ layouts. High
numbers of edge crossings can lead to visual clutter,
making it difficult to observe relationships and patterns
within the data. [4]

= 1B
X=Y"" deie)) @)
i=1 j=i+1

where d(e;, e;) is 1 if edges e; and e; intersect, and 0
otherwise.

5) Combined Fitness Calculation: The total fitness
score is a weighted combination of the above equations
(1), (2), (3) and (4). The weights are chosen to balance
the importance of each criterion, ensuring a well-
organized graph layout. The fitness function formula
is:

FitnessScore = + wy X A
+ wg X ©
+ w3 X X

(%)

—ws x N x (minD)?

— Wyq X

In the code, the weights are:

w; = 2.0 (Weight for Minimum Distance Neighbour Sum)
wy = 2.0 (Weight for Edge Length Deviation)

ws = 1.0 (Weight for Edge Crossings)

wy = 2.5 (Weight for Edge Length Deviation Penalty)

ws = 0.5 (Weight for Node Spread)

where € is a small constant added to avoid division by
zero. Additionally, we incorporate a check for symmet-
rical edge crossings, as some symmetrical patterns can
be beneficial. If such patterns are detected, the fitness
is multiplied by a weight of 1.5.

C. Selection

Individual graphs are probabilistically selected from
the population in the selection phase based on their fit-
ness values. This means that better layouts are normally
favored, ensuring a better creation of the next genera-
tion. Additionally, implementing elitism means that the
graphs are firstly sorted based on their fitness scores
and then only the top half of individuals are retained
in the population. This approach hopefully ensures that
the best layouts remain in the next generation leading
to continuous improvement and progress.

D. Crossover

Crossover combines genetic material from two par-
ent graphs to create new offspring. This process keeps
the genetic pool diverse, which is important for finding
better solutions and exploring different possibilities in
the population. Usually, this operation requires two
parent individuals to produce one offspring. Our imple-
mentation includes creating two offsprings to uniformly
retain genes that could possibly lead to future improve-
ment in the layout. [8] A crossover point is chosen
randomly in the node list, and as a result, the parents’
nodes are divided by the separation point. The child
graphs are then created by replacing the first parent’s
node sublist with the second parent’s node sublist,
effectively exchanging the genetic material. It should
be noted that in this process copies of the parents
are normally utilized to avoid disrupting the original
parents.

E. Mutation

There are two types of mutations that occur in every
individual with a probability of 0.1% per graph. The
mutation is implemented by randomly selecting a node
from the graph, and performing one of two mutation
operations on it:

1) Rotate mutation is a random rotation of con-
nected nodes or random movement of selected
incident edges, preserving their length and con-
nectivity. This exploration of new configurations
helps discover optimal layouts.

2) Flip mutation is divided into horizontal, vertical,
and diagonal flips of a node’s position.

The flipping mutation introduces more diversity avoid-
ing local minimum. Figure 2 illustrates a horizontal
flip in which node labeled 3 is flipped. One of the
three options is chosen with equal probability. Rota-
tional mutations would make it difficult to achieve a
similar layout. By flipping the 3rd node we not only
improve node distribution but reduce the number of
edge crossings by one.

III. RESULTS

Generally, the results from simulations show a signif-
icant improvement in layout with relatively fast conver-
gence. Figure 1 shows a chronological time-lapse of the
evolutionary process for a random graph with 10 nodes,
15 edges, and a population size of 500. We observe

438

that in the first few hundred generations, most changes
to the layout are improving on even spacing of nodes
while the last few thousand generations significantly
improve on symmetry. One of the components of this
optimization apart from the one-point crossover and
elitism was also the mutation method used, which
introduces random perturbations to the graph layout.

Comparing these results with the state-of-the-art lay-
out algorithm Force Atlas 2 [9] developed by Gephi
[10], we offer visually comparable results. However, it
is worth noting that Force Atlas 2 does not preserve
edge lengths whereas our implementation does.

Furthermore, we measured computation time across
various graph sizes—from 100 x 100 nodes and edges
to scales reaching up to 6,400 x 6,400 over a generation
of 100 graphs. The most computationally expensive
operation is the fitness evaluation, for instance, cal-
culating minimum distances between neighbors, edge
length deviations, and edge crossings involves iterating
through all the edges and nodes which becomes compu-
tationally heavier when dealing with larger graph sizes
or larger populations. Through parallel programming,
which takes advantage of multi-core processors, we
distribute computations across multiple threads. [11]
We implement this by using the ExecutorService class
!, which manages a pool of threads for concurrent
execution, we allow multiple fitness evaluations to run
simultaneously. A Semaphore is used to synchronize
the completion of the tasks, ensuring all evaluations
are completed before proceeding further. Our approach
not only delivers efficient computational performance
visible in Figure 4 but also ensures scalability for
managing larger graphs.

IV. CONCLUSION

Our research explores a relatively untapped area, as
there are few published works on this topic, which are
mostly quite outdated. Thus, we significantly improve
the quality of the generated graph layout by integrating
more precise and complex fitness calculations that take
into account elements like minimum distances between
neighbors, edge length, edge variations, symmetry, and
edge crossings. Our strategic use of different mutations
to preserve genetic diversity emphasizes how crucial it
is to keep a variety of genes. Moreover, we show that
even for large-scale graphs, genetic algorithms could
be highly efficient by utilizing parallel computing archi-
tectures, especially in the fitness evaluation process. To
conclude, our implementation of a more precise fitness
function with the help of concurrent programming not
only enhances performance but also lays a foundation
for more complex graphs with efficiency and scalabil-
ity, improving the graph layout quality, and opening a
way for further research and development in this field.

REFERENCES

[1] T. Masui, “Evolutionary learning of graph layout constraints
from examples,” in Proceedings of the 7th annual ACM Sym-

Thttps://github.com/EkaterinaB29/genetic-algorithm-graph-layouts

(a) Gen=0 (b) Gen=10 (d) Gen=100

(e) Gen=500 (f) Gen=1000 (g) Gen=5000 (h) Gen=10000

Fig. 1: Mutation by flipping a node (3) horizontally.

35000

30000

Horizontal Flip 25000 -

rrrrrrrr 4 ERRSERES 3 RN 20000

Time in ms

15000 |

10000 |

5000

0
(a) Before mutation (b) After mutation 0 1000 2000 3000 4000 5000 6000 7000

Graph size for population 100

Fig. 2: Mutation by flipping a node (3) horizontally.
Fig. 4: Requirement of running time in ms for different graph
sizes

Department of Computer Science, 1996.

[4] A. d. M. S. Barreto and H. J. Barbosa, “Graph layout using
a genetic algorithm,” in Proceedings. Vol. 1. Sixth Brazilian
Symposium on Neural Networks. 1EEE, 2000, pp. 179-184.

[5] S. J. Gould, “Darwinism and the expansion of evolutionary
theory,” Science, vol. 216, no. 4544, pp. 380-387, 1982.

[6] H. Du, Z. Wang, W. Zhan, and J. Guo, “Elitism and distance
strategy for selection of evolutionary algorithms,” IEEE Access,
vol. 6, pp. 4453144541, 2018.

[71 G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis,
“Algorithms for drawing graphs: an annotated bibliography,”
Computational Geometry, vol. 4, no. 5, pp. 235-282, 1994.

[8] R. Poli and W. B. Langdon, “Schema theory for genetic
programming with one-point crossover and point mutation,”
Evolutionary Computation, vol. 6, no. 3, pp. 231-252, 1998.

[9] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian,

Fig. 3: Force Atlas 2 layout from Gephi given the same input “Forceatlas2, a continuous graph layout algorithm for handy

graph with 10 nodes, 15 edges. network visualization designed for the gephi software,” PloS
one, vol. 9, no. 6, p. €98679, 2014.

[10] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open

source software for exploring and manipulating networks,” in

posium on User Interface Software and Technology, 1994, pp. Proceedings of the international AAAI conference on web and
103=108. social media, vol. 3, no. 1, 2009, pp. 361-362.
[2] W.T. Tutte, “How to draw a graph,” Proceedings of the London [117 A. Zamuda, J. Brest, B. Boskovié¢, and V. Zumer, ‘“Differential
Mathematical Society, vol. 3, no. 1, pp. 743-767, 1963. evolution for parameterized procedural woody plant models
[3] T. Eloranta and E. Mikinen, TimGA: A Genetic Algorithm reconstruction,” Applied Soft Computing, vol. 11, no. 8, pp.
for Drawing Undirected Graphs. University of Tampere, 49044912, 2011.

439

