
ERK'2024, Portorož, 388-392 388

Loops of the Domain-specific Programming Language
DaphneDSL

Borko Bošković, Janez Brest, Aleš Zamuda
Computer Architecture and Languages Laboratory

Institute of Computer Science
Faculty of Electrical Engineering and Computer Science

University of Maribor
Koroška cesta 46, 2000 Maribor, Slovenia

e-mail: borko.boskovic@um.si, janez.brest@um.si, ales.zamuda@um.si

Zanke domensko specifičnega
programskega jezika DaphneDSL

Povzetek — Ta prispevek uporablja domensko specifičen
programski jezik DaphneDSL projekta DAPHNE, nudi
pregled sistemske arhitekture DAPHNE in nato predstavi
dva primera DaphneDSL. Prvi primer izračuna vsoto
naravnih števil, drugi pa energijo binarnih zaporedij.
Za razvoj sistema DAPHNE je na GitHubu repozitoriju
ponujen seznam težav, ki se jih lahko razvijalci lotevajo
ter ponujajo rešitve. Ta prispevek obravnava eno tako
težavo, ki se pojavi v programskih zankah s številnimi
ponovitvami znotraj domensko specifičnega jezika
DaphneDSL in ponuja začasno rešitev. V času pisanja
tega prispevka so razvijalci hitro obravnavali prijavo
težave, našli in odpravili napako ter težavo razrešili.

Abstract — This contribution uses the DaphneDSL
domain-specific programming language of the DAPHNE
project, provides an overview of the DAPHNE system ar-
chitecture, and then presents two DaphneDSL examples.
The first example calculates the sum of natural numbers
and the second energy of binary sequences. For the
development of the DAPHNE system, a list of issues that
developers can tackle and solve is offered on the GitHub
repository. This paper addresses one such issue that
occurs in programming loops with many iterations within
the domain-specific language DaphneDSL and offers a
temporary workaround. At the time of writing this paper,
the issue has been quickly addressed by developers, a
bug found and fixed, and issue closed.

1 Introduction
The DAPHNE [1] project (integrated Data Analysis
Pipelines for large-scale data management, High-
performance computing, and machiNE learning)
provides a system for data analysis. This includes man-
aging and processing data using data analysis pipelines.
The system is designed to enable efficient use of machine
learning and supercomputers.

The DAPHNE system [2] is designed to enable ef-
ficient productivity for integrated data pipelines through
an open application interface using the domain-specific
language DaphneDSL. The performance of the system
was also measured through execution of workloads on
state-of-the-art heterogeneous devices and supercomput-

ers in [2, 3, 4]. Special attention is given to scheduling of
tasks, level of redundancy, and sparsity of matrices.

The extended compilation system, including
the compilation stages and runtime execution, is
published as open source at the following address:
https://github.com/daphne-eu/daphne/.

The domain-specific language, DaphneDSL, was
modeled after machine learning systems and numerical
computing languages and libraries such as Julia, NumPy,
R, and SystemDS DML [5]. Its syntax is case-sensitive
and similar to the syntax of the C/C++ and Java pro-
gramming languages. One can write it in files with the
extensions .daphne or .daph. The language supports
the following concepts: variables, data types, comments,
expressions, control structures, loops, functions, etc.,
as documented at https://daphne-eu.github.
io/daphne/DaphneDSL/LanguageRef/.

For the development of the DAPHNE system, a
list of issues that developers can tackle and solve
is offered on the GitHub repository, at https:
//github.com/daphne-eu/daphne/issues.
While using DaphneDSL, we were interested in one such
listed issue (DaphneDSL loops crash after a
certain number of iterations, #77, labeled
bug), pertaining to loops that have a large number of
iterations. This issue occured in programming loops with
many iterations within DaphneDSL and we applied a
temporary workaround. At the time of writing this paper,
the issue has been quickly addressed by developers, a
bug found and fixed, and issue closed.

The rest of this paper is organized as follows. In the
second section, the related work on system architecture
is presented. In the third section, the related work on
domain-specific language DaphneDSL is presented, fol-
lowed by two examples with loops. In the fourth section,
we illustrate an example of a program for calculating the
energies of binary sequences. The fifth section gives the
code testing with loops and findings. The last section
contains the conclusion.

2 System Architecture
The user core of the DAPHNE system architecture is
its execution environment. This allows the execution
of flows and operations as defined in the DaphneDSL
language scripts and DaphneLib libraries. The system

389

Code 3: Code snippet in DaphneIR dialect.

module {
func.func @main() {
%0="daphne.constant"(){value = 0 : si64}:() -> si64
%1="daphne.constant"(){value = "Sum is: "}:()->!daphne.String
...
%11=scf.for %arg0=%6 to %5 step %6 iter args(%arg1=%0)->(si64){

%c1 i32=arith.constant 1:i32
%14="daphne.call kernel"(%arg0,%c1 i32,%10){callee=
" cast int64 t size t"}:(index,i32,!daphne.DaphneContext)->si64

%c2 i32=arith.constant 2:i32
%15="daphne.call kernel"(%14,%4,%c2 i32,%10){callee=
" ewMul int64 t int64 t int64 t"}:
(si64,si64,i32,!daphne.DaphneContext)->si64

%c3 i32=arith.constant 3:i32
%16="daphne.call kernel"(%arg1,%15,%c3 i32,%10){callee=
" ewAdd int64 t int64 t int64 t"}:
(si64,si64,i32,!daphne.DaphneContext)->si64

scf.yield %16:si64
}
...

Code 1: Program for calculating the sum of the first 1000 natu-
ral numbers.
File: program.daphne
Initialization
sum = 0;

Calculation of sum
for (i in 1:1000) {

sum = sum + i;
}

Output result
print("Sum is: "+sum);

Code 2: Parsing, compiling and running the program.

$ bin/daphne program.daphne
$ Sum is: 500500

uses multi-level translation. The compiler framework
MLIR [6] (Multi-Level Intermediate Representa-
tion) [3, 7] is used for this purpose. This framework
enables the implementation of extensible compilers,
including the use of fragmented software, compiling for
heterogeneous hardware, and linking compilers. Because
of these properties, MLIR made it possible to build the
domain-specific language DaphneDSL in a relatively
fast and efficient way. DaphneDSL scripts are converted
to DaphneIR intermediate code using MLIR. Multiple
passes of code optimization allow an efficient pipeline
design and kernel execution. Thus, certain operations are
implemented for specific hardware on a local computer
or distributed environment.

DaphneDSL programs are executed hierarchically.
The runtime coordinator receives the DaphneDSL code
and creates a program execution plan. The compiler

recognizes workloads and whether they will run on a
local computer or in a distributed environment. In the
case of a local computer, the workloads are executed
within a single computer; in the case of a distributed
system, the execution is distributed between several
computer nodes.

3 DaphneDSL Programming Language
The goal of DaphneDSL is to provide an open and
extensible development environment for integrated data
analysis pipelines. This includes data management
and query processing, high-performance computing,
and machine learning [8]. The compiler is based on
the MLIR framework. DaphneDSL maps its code to
the intermediate code of DaphneIR or the Daphne
dialect of the MLIR framework. Several algorithms
with loops already provided in the DAPHNE system
use loops and are available as DaphneDSL scripts at
https://github.com/daphne-eu/daphne/
tree/main/scripts/algorithms.

To demonstrate the syntax and build up a test exam-
ple, let us write a simple program that will summarize
the first 1000 natural numbers and print the result to
the standard output in the file program.daphne.
The program is shown in Code 1. The commands for
parsing, compiling, and running this program are shown
in Code 2. In the DAPHNE system, for parsing and
converting the code into the DaphneIR intermediate code
(the dialect of the MLIR framework), a domain-specific
grammar is used in the system, implemented with the
help of the ANTLR4 tool [9]. Code 3 therefore shows
an example snippet of the DaphneIR intermediate code
of our DaphneDSL example from Code 1. This inter-
mediate code is then passed to the compiler and runtime
environment. A longer example with loops follows in the
next section.

390

4 Calculation of the Energies of Binary Se-
quences

The Low-Autocorrelation Binary Sequences (LABS)
problem is a well-known optimization problem. To
solve this problem, we need an efficient calculation of
the energies of binary sequences. Implementations of
these calculations in programming language C++ already
exist [10, 11] and computational power of graphical
processing units has also been utilized for them [12].

A binary sequence of length L is defined as ZL =
{z1, z2, ..., zL}; zi ∈ {+1,−1}. The energy E of the bi-
nary sequence ZL is calculated as shown in Equation (1).
This Equation contains the expression Ck(ZL), which
determines the autocorrelations of the sequence ZL. The
main goal of the LABS problem is to find a sequence ZL

that minimizes E as shown in Equation (2), where BL

represents the set of all sequences or the search space and
Z∗
L is the sequence with the minimum energy value.

E(ZL) =

L−1∑
k=1

C2
k (1)

Ck(ZL) =

L−k∑
i=1

zi · zi+k

Z∗
L = arg min

ZL∈BL

E(ZL) (2)

The implementation of the energy calculation in
the DaphneDSL language is shown in Code 4. This
implementation contains a function calcE to calculate
the energy and a loop that for each L generates a
sequence of a certain length, calculates its energy, and
outputs the result to standard output. Table 1 shows
the number of referenced calls to different kernels.
As we can see, the DaphneDSL language syntax for
our example is relatively simple and similar to already
existing programming languages, such as C++ and R.

5 Loops in the DaphneDLS Programming
Language

The loops in DaphneDSL have a simple syntax, and allow
the code inside the block to be executed multiple times.
This allows the programs to be shorter and expressively
more powerful. In this paper, we showed two examples
of the use of loops. In the first, we calculated the sum
of natural numbers, and, in the second, the energy of the
sequences. The runtime environment returned the correct
results, and the program was fast. With the code base
before the issue was fixed, it was discovered that the ex-
ecution of the program ends prematurely in the case of
loops with the larger number of iterations. In the case
of the sum of natural numbers, we managed to summa-
rize the natural numbers up to the number 174,355, and
in the case of sequences, we calculated the energies for
all lengths up to L = 192.

To overcome the described limitation with a tempo-
rary workaround before the issue was fixed in the code,

we found it necessary to increase the stack size used by
the program. When we increased the size of the stack
(see Code 5) to an unlimited size, we were able to achieve
results, even in the case of loops containing many more
iterations. For example, we evaluated sequences up to
L = 1000 successfully, and calculated the sum of natu-
ral numbers up to 10,000,000. In all cases, the program
ended successfully.

We also checked the operation of the MLIR frame-
work. For this purpose, we implemented the calculation
of the sum of natural numbers, as shown in the Codes 6
and 7. The MLIR code is shown in Code 6. Code 7
shows the C++ code that implements the function for
printing results, which is used in the MLIR code. The
compilation of both files into the executable program is
shown in Code 8: we first translated the MLIR code into
a lower level of code, and finally translated it, together
with the C++ code, into the executable program. This ex-
ample also shows how to combine compilers that support
the MLIR framework. The executable program worked
properly and had no issues with premature termination.
Even in the case of a standard stack size, the program
allowed loops with a larger number of iterations. For
example, we could calculate the sum of natural numbers
up to 10,000,000. As the issue occurs in programming
loops with many iterations within DaphneDSL as
mentioned and we applied a temporary workaround, we
were also in contact with developers who quickly fixed
the issue in the system code by closing the issue #77
with the Pull Request #820, as provided at https://
github.com/daphne-eu/daphne/issues/77,
merging the fix to the DAPHNE main branch (commit
b294230a63e84861a0426d6d9958099baedd9bec on Sep
5, 2024). This also demonstrates how the DAPHNE
code, published as open source, is becoming more and
more reliable and valuable over time.

6 Conclusion
In this paper, we demonstrated two examples of using
DaphneDSL domain-specific programming language and
the DAPHNE system runtime environment, specifically
for loops. The DaphneDSL and DAPHNE system enable
management and processing of data using pipelines,
efficient use of machine learning, and deployment on
supercomputers, which was an additional motivation
to demonstrate these examples. The first example
calculated the sum of natural numbers, and the second
calculated the energy of binary sequences. In both
examples, the executable program provided the correct
results.

We have also found an interesting listed issue that
appeared in the case of loops with a larger number of
iterations. We created a workaround for the issue by
temporarily increasing the stack size which the operating
system allocates to the process. With this workaround,
the program worked flawlessly, even in the case of loops
with a vast number of iterations. When writing this arti-
cle, the developers have fixed the described stack prob-
lem of the programming loops successfully. The bug

391

Table 1: Statistics of the kernel calls.
#calls kernel

1 1 cast char int64 t
2 1 cast char uint64 t
3 2 cast int64 t DenseMatrix int64 t
4 3 cast int64 t size t
5 10 cast int64 t uint64 t
6 7 cast size t int64 t
7 5 cast uint64 t int64 t
8 3 concat char char char
9 2 createDaphneContext DaphneContext uint64 t uint64 t

10 14 decRef Structure
11 2 destroyDaphneContext
12 6 ewAdd int64 t int64 t int64 t
13 3 ewAdd uint64 t uint64 t uint64 t
14 2 ewGe int64 t int64 t int64 t
15 2 ewMul DenseMatrix int64 t DenseMatrix int64 t DenseMatrix int64 t
16 1 ewMul DenseMatrix int64 t DenseMatrix int64 t int64 t
17 12 ewMul int64 t int64 t int64 t
18 1 ewSub DenseMatrix int64 t DenseMatrix int64 t int64 t
19 3 ewSub uint64 t uint64 t uint64 t
20 1 incRef Structure
21 1 print char bool bool
22 1 sample DenseMatrix int64 t int64 t size t bool int64 t
23 8 sliceRow DenseMatrix int64 t DenseMatrix int64 t int64 t int64 t

Code 4: A program for calculating energies of binary se-
quences.

def calcE(s:matrix<si64>,L:ui64) ->
ui64 {

E=as.ui64(0);
for(k in 1:L - 1) {

ck=as.si64(0);
for(i in 0:L - k - 1) {

ck=ck+as.si64(
as.scalar(s[i,]*s[i+k,]));

}
tmp = as.ui64(ck*ck);
E = E + tmp;
}
return E;

}

for (L in 5:301) {
s = sample(2,L,true,-1);
s = 2*s - 1;
E = calcE(s,as.ui64(L));
print("L="+L+" E="+E);

}

has been fixed on the DAPHNE main branch (commit
b294230a63e84861a0426d6d9958099baedd9bec on Sep
5, 2024). This demonstrates how the DAPHNE code,
published as open source, is becoming more and more
reliable and valuable over time.

We also showed an example of the intermediate code
DaphneIR (for the MLIR framework). It is translated into
lower-level code and, ultimately, into an executable pro-
gram. To test whether the stack size problem is related to

Code 5: Instruction code for resizing the stack.

$ ulimit -s unlimited

Code 6: MLIR code for calculating the sum of natural numbers.

module {
func.func @main() -> i32 {

%0 =arith.constant 0:index
%10=arith.constant 10000001:index
%c0=arith.constant 0:i64
%c1=arith.constant 1:index
%ret=arith.constant 0:i32

%result = scf.for %i = %0 to %10 step
%c1 iter args(%sum = %c0) -> (i64) {
%i i64=arith.index cast%i:indextoi64
%sum next=arith.addi %sum,%i i64:i64
scf.yield %sum next:i64

}

call @print i64(%result) : (i64) -> ()
return %ret : i32

}

func.func private @print i64(%val:
i64)->()

}

the intermediate code, we implemented the sum of nat-
ural numbers by using the MLIR code. Here, we also
showed an example of how to connect different program-
ming languages. The resulting executable did not have a
stack size problem.

Future work includes developing further exam-

392

Code 7: C++ code that implements the print function.

#include <iostream>
extern "C" int main();
extern "C" void print i64(int64 t val) {

std::cout<<"Result is:"
<<val<<std::endl;

}

Code 8: Compiling the MLIR code.

$ mlir-opt sum.mlir
--pass-pipeline="builtin.module(
func.func(convert-scf-to-cf,
convert-arith-to-llvm),
convert-func-to-llvm,convert-cf-to-llvm,
reconcile-unrealized-casts)">
sum opt.mlir

$ mlir-translate --mlir-to-llvmir
sum opt.mlir > sum.ll

$ clang++ -o sum sum.cpp sum.ll

ples and use of DAPHNE system and DaphneDSL,
also including loops and other control structures, and
benchmarking with the provided examples.

Acknowledgment
The DAPHNE project is funded by the European Union’s Hori-
zon 2020 research and innovation program under grant agree-
ment number 957407 from 12/2020 through 11/2024.

The authors acknowledge the financial support from the
Slovenian Research and Innovation Agency (Research Core
Funding No. P2-0041 – Computer Systems, Methodologies,
and Intelligent Services).

References
[1] The DAPHNE Project. https://daphne-eu.eu/

project/. Accessed: 2024-07-15.

[2] Patrick Damme, Marius Birkenbach, Constantinos Bit-
sakos, Matthias Boehm, Philippe Bonnet, Florina Ciorba,
Mark Dokter, Pawl Dowgiallo, Ahmed Eleliemy, Chris-
tian Faerber, et al. Daphne: An open and extensible sys-
tem infrastructure for integrated data analysis pipelines. In
Conference on Innovative Data Systems Research, 2022.

[3] Aristotelis Vontzalidis, Stratos Psomadakis, Constanti-
nos Bitsakos, Mark Dokter, Kevin Innerebner, Patrick
Damme, Matthias Boehm, Florina Ciorba, Ahmed

Eleliemy, Vasileios Karakostas, et al. DAPHNE Run-
time: Harnessing Parallelism for Integrated Data Analysis
Pipelines. In European Conference on Parallel Process-
ing, pages 242–246. Springer, 2023.

[4] Aleš Zamuda and Mark Dokter. Deploying DAPHNE
Computational Intelligence on EuroHPC Vega for Bench-
marking Randomised Optimisation Algorithms. In Inter-
national Conference on Broadband Communications for
Next Generation Networks and Multimedia Applications
(CoBCom), pages 1–8, 2024.

[5] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard,
Mark Dokter, Robert Ginthör, Kevin Innerebner, Florijan
Klezin, Stefanie Lindstaedt, Arnab Phani, Benjamin Rath,
Berthold Reinwald, Shafaq Siddiqi, and Sebastian Ben-
jamin Wrede. SystemDS: A Declarative Machine Learn-
ing System for the End-to-End Data Science Lifecycle.
In 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, Netherlands, January 12-15,
2020, pages 1–8, 2020.

[6] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert
Cohen, Andy Davis, Jacques Pienaar, River Riddle, Ta-
tiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. MLIR: Scaling compiler infrastructure for do-
main specific computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization
(CGO), pages 2–14. IEEE, 2021.

[7] D4.2: DSL Runtime Prototype. https://
daphne-eu.eu/wp-content/uploads/2022/
12/D4.2-DSL-Runtime-Prototype.pdf/,
2022. Accessed: 2024-07-15.

[8] D3.1 Language Design Specification. https:
//daphne-eu.eu/wp-content/uploads/
2022/06/DAPHNE_D3.1_LanguageDesign_v1.
2.pdf/, 2022. Accessed: 2024-07-15.

[9] Another tool for language recognition. https://www.
antlr.org/. Accessed: 2024-07-15.

[10] Borko Bošković, Franc Brglez, and Janez Brest. Low-
autocorrelation binary sequences: On improved merit fac-
tors and runtime predictions to achieve them. Applied Soft
Computing, 56:262–285, 2017.

[11] Janez Brest and Borko Bošković. A heuristic algorithm for
a low autocorrelation binary sequence problem with odd
length and high merit factor. IEEE Access, 6:4127–4134,
2018.

[12] Borko Bošković, Jana Herzog, and Janez Brest. Paral-
lel self-avoiding walks for a low-autocorrelation binary
sequences problem. Journal of Computational Science,
77:102260, 2024.

