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Abstract
In this paper, we present a comparison of different Monte-
Carlo-method-based algorithms for radiance estimation
in a heterogeneous medium. The algorithms employ a
null-collision approach that acts as fictitious material and
homogenizes the medium, supporting the use of closed-
form free-path sampling. We give insight into the funda-
mentals of volumetric light transport simulation, overview
the implemented algorithms in a web-based volumetric
path tracing framework, and present the evaluation re-
sults.

1 Introduction
Monte Carlo methods are widely used to estimate radia-
tive transfer in homogeneous media by approximating the
radiative transfer equation by simulating absorption and
scattering events. However, in heterogeneous media, the
properties like the absorption and scattering coefficients
vary spatially, increasing the complexity significantly. To
address this, null collisions are used to homogenize the
medium and enable closed-form sampling of absorption
and scattering events. Galtier et al. [2] have developed
an integral formulation that reveals a wide family of null-
collision algorithms for estimating the radiance. Kutz et
al. [3] propose practical null-collision algorithms for the
use in motion picture industry. In this paper, we evalu-
ate the performance of selected algorithms in the context
of scientific visualization. Specifically, we evaluate ana-
log delta tracking, weighted delta tracking, and weighted
decomposition tracking. Our evaluation will serve as a
guide when choosing a suitable algorithm for scientific
volume visualization.

2 Radiative transfer equation
To derive the radiative transfer equation (RTE), we must
consider how light interacts with matter, which directly
influences radiance L. Light can be absorbed or scat-
tered (Ls) when it passes through a participating medium.
Additionally, the medium itself can emit light, which we
model with a function Le. We combine these effects in a

single differential equation:

(ω · ∇)L(x, ω) = −µa(x)L(x, ω)− µs(x)L(x, ω) (1)
+µa(x)Le(x, ω) + µs(x)Ls(x, ω),

Ls(x, ω) =

∫
S2

fp(x, ω
′, ω)L(x, ω′) dω′, (2)

where µa and µs are the absorption and scattering coef-
ficients, respectively. Integrating along the direction ω
yields the RTE:

L(x, ω) = (3)∫ ∞

0

T (x, y) [µa(y)Le(y, ω) + µs(y)Ls(y, ω)] dy,

T (x, y) = exp

(
−
∫ ∥x−y∥

0

(µa(z) + µs(z)) dz

)
. (4)

3 Algorithms
This section presents delta tracking, weighted delta track-
ing, and weighted decomposition tracking. The imple-
mentation of these algorithms was inspired by Kutz et
al. [3], who continue from Galtier et al.’s formulation [2]
and produce several sophisticated light estimators.

3.1 Delta tracking
We approximate the integral in Equation (4) by drawing
samples of the integrand. By choosing the probability
density function of p(y) ∝ T (x, y), we can eliminate
the evaluation of T (x, y) in the integrand. We achieve
this by introducing a fictitious medium that homogenizes
the volume without changing the light transport. This
medium does not absorb light but only scatters it at a
rate µn(x) without changing its direction. We define the
majorant as µ = µa(x) + µs(x) + µn(x), which gives
T (x, y) = exp(−

∫ z

0
µdz) = exp(−µz). We can sam-

ple z via the inversion method, z = − ln(1−u)/µ, where
u ∼ U(0, 1) is uniformly distributed on the unit interval.
The one-sample RTE estimator is thus:

µa(y)

µ
Le(y, ω) +

µs(y)

µ
Ls(y, ω) +

µn(y)

µ
L(y, ω). (5)

Delta tracking adds a probabilistic evaluation of the above
terms so that only one of them can be evaluated for each
sample. This leads to Algorithm 1.
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Algorithm 1 Delta tracking
1: while true do
2: t← − ln(1−u)

µ
3: x← x− tω
4: if u < µa(x)

µ then
5: return Le(x, ω)

6: else if u < µa(x)
µ + µs(x)

µ then
7: ω ← sample ∝ fp(x, ω

′, ω)
8: end if
9: end while

Delta tracking requires a bounding majorant µ for the
absorption and scattering probabilities to be physically
plausible, which is a significant limitation.

3.2 Weighted delta tracking
Weighted delta tracking mitigates the requirement of find-
ing a bounding majorant µ by redefining the probabili-
ties for evaluating the integrand terms. More precisely,
we need to redefine the probabilities in the case when
µn(y) < 0. Probabilistic evaluation ⟨f(y)⟩P is a ran-
dom variable that returns f(y)/P with probability P and
0 otherwise. Note that its expected value is f(y). We can
upgrade our one-sample RTE estimator:〈

µa(y)
µ Le(y, ω)

〉
Pa

+
〈

µs(y)
µ Ls(y, ω)

〉
Ps

+
〈

µn(y)
µ L(y, ω)

〉
Pn

, (6)

where Pa, Ps, and Pn are absorption, scattering, and null-
collision probabilities. They can be arbitrary, gracefully
handling the case when µn(y) < 0. The pseudo-code is
shown in Algorithm 2.

Algorithm 2 Weighted delta tracking
1: w ← 1
2: while true do
3: t← − ln(1−u)

µ
4: x← x− tω
5: if u < Pa(x) then
6: return w × µa(x)

µ Le(x, ω)

7: else if u < Pa(x) + Ps(x) then
8: ω ← sample ∝ fp(x, ω

′, ω)

9: w ← w × µs(x)
µ(x)

10: else
11: w ← w × µn(x)

µ(x)

12: end if
13: end while

In our implementation in volumetric path tracing frame-
work (VPT) [4], we added a scalar b such that µ = b ·
maxµa + µs. If b < 1, µn(x) can become negative,
which can help performance. If b > 1, the volume is
oversampled, and performance deteriorates. Figure 1 dis-
plays our weighted delta tracking implementation results
at different values of b. Note the increased variance in
Figure 1a. Figure 2 shows another volume in which the
true majorant is significantly lower, leading to faster per-
formance when setting b < 1.

3.3 Decomposition tracking
Decomposition tracking is an approach that decomposes
the original volume into two superimposed sub-volumes:
the homogeneous control volume and the heterogeneous
residual volume. Each sub-volume has its own absorption
and scattering coefficients, listed in Table 1.

Table 1: Coefficients of control and residual volumes.

µc
t = µc

a + µc
s extinction coef. of control volume

µr
a(x) = µa(x) − µc

a absorption coef. of residual volume
µr
s(x) = µs(x) − µc

s scattering coef. of residual volume
µr
t (x) = µt(x) − µc

t extinction coef. of residual volume

µn(x) = µ − µr
t (x) − µc

t (x) null-collision coefficient

The motivation behind decomposition is that we can
reduce the expensive memory look-ups as it allows some
events to be evaluated analytically using the control com-
ponent. Kutz et al. [3] describe two variants of decom-
position tracking: analog and weighted decomposition
tracking. A downside of analog decomposition is that it
requires both the minorant and the majorant to be bound-
ing. Finding these bounds is challenging from a compu-
tational standpoint. Weighted decomposition allows non-
bounding coefficients to be used. We have implemented
the weighted variant. The pseudo-code for weighted de-
composition tracking is shown in Algorithm 3.

Algorithm 3 Weighted decomposition tracking
1: w ← 1
2: while true do
3: t← − ln(1−ξ)

µ(x)
4: x← x− tω
5: F ← 0
6: if u < (F ← F + P c

a(x)) then
7: return w × µa(x)

P c
a (x)µ

Le(x, ω)

8: else if u < (F ← F + P c
s (x)) then

9: ω ← sample ∝ fp(x, ω
′, ω)

10: w ← w × µs(x)
P c

s (x)µ

11: else if u < (F ← F + P r
a (x)) then

12: return w × µr
a(x)

P r
a (x)µLe(x, ω)

13: else if u < (F ← F + P r
s (x)) then

14: ω ← sample ∝ fp(x, ω
′, ω)

15: w ← w × µr
s(x)

P r
s (x)µ

16: else
17: w ← w × µn(x)

Pnµ
18: end if
19: end while

A new uniform m, which is also settable in VPT’s
user interface, allows users to set the fraction of true ex-
tinction that will become the minorant. Figure 3 shows 3
decomposition tracking results for different values of m,
with b = 1.

4 Results
To evaluate the implemented algorithms, we calculated
root mean square error (RMSE), which measures the noise
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(a) b = 0.63. (b) b = 1. (c) b = 10.

Figure 1: Three different values of parameter b in weighted delta tracking.

(a) b = 0.25. (b) b = 0.50. (c) b = 0.75.

Figure 2: Three different values of parameter b for weighted delta tracking.

of the given image compared to the converged delta track-
ing result.

We observe the evolution of RMSE over a 10s time
frame. We also compare the time to unit variance (TTUV)
values of the converged images. TTUV is defined as the
product of render time and RMSE, combining the differ-
ences in variance and in computational complexity in a
single metric.

4.1 Weighted-delta tracking
First, we compared weighted delta tracking using the val-
ues of b ∈ {0.25, 0.5, 0.75, 1.0}. Figure 4 shows the evo-
lution of RMSE with respect to the render time. The best
RMSE is obtained for b = 1 as this is the true majo-
rant. For smaller values of b the implementation achieves
larger RMSE, as the variance significantly increases when
sampling in the regions where µn(x) < 0, which causes
the weight w to alternate in sign.

We get a similar insight when analyzing TTUV. Fig-
ure 5 shows TTUV values of converged images (taken
after 300s) for the given values of b. Similar values are
achieved for b = 1 and b = 0.75, indicating that µn(x) <
0 only in small parts of the volume. The increased sam-
pling efficiency counteracts the increase in variance.

4.2 Decomposition tracking
For the decomposition tracking, we observe how differ-
ent values of m influence RMSE. Figure 5 shows RMSE
with respect to m ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. In
all cases, we have set b = 1 (true majorant) so that we
could concentrate solely on the influence of m. Figure 5
reveals that TTUV increases with respect to m. This
is due to a similar reason as in weighted delta tracking,
since increasing m above the true minorant significantly
increases the variance due to the alternating sign of w.
In this volume, the region where the minorant is non-
bounding is large, and the increase in sampling efficiency
does not counteract the increase in variance.

4.3 Final comparison
Finally, Table 2 displays TTUV values, comparing the
best weighted delta tracking result (b = 0.75) with the
best weighted decomposition tracking result (m = 0.01).
The render time was 10s.

5 Conclusion
We evaluated two advanced Monte Carlo methods for
volume rendering: weighted delta tracking and weighted
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(a) m = 0.01. (b) m = 0.02. (c) m = 0.08.

Figure 3: Three different values of parameter m in weighted decomposition tracking.
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Figure 4: Comparison of RMSE values for different val-
ues of parameter b in weighted delta tracking.
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Figure 5: Left: comparison of TTUV values for different
values of parameter b in weighted delta tracking. Right:
comparison of RMSE values for different values of pa-
rameter m in weighted decomposition tracking.

Table 2: TTUV comparison.

Method Parameter TTUV

Weighted delta tracking b = 0.75 78.4
Decomposition tracking m = 0.01 95.8

decomposition tracking. Weighted delta tracking exhib-
ited superior performance when the majorant was set close
to the true majorant, while weighted decomposition track-
ing excelled at minorant values close to the true minorant.
Although both methods achieved worse quality with non-
bounding parameters than with bounding parameters, their
advantage lies in the fact that it is not necessary to find the
true bounds ahead of time. A possible future extension
of the algorithms could include adjusting the parameters
while rendering to dynamically optimize convergence.

The source code of this project is available on GitHub [1].
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