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Abstract
By treating meshes as undirected graphs and employing
a graphlet dictionary, we achieve significant compres-
sion. Our method is inspired by automorphism-based
compression techniques, and we explore the potential of
this approach in detail. Preliminary results on a vari-
ety of sample meshes are promising and indicate that
our method can substantially reduce the amount of data
needed to represent complex 3D models. We evaluate the
performance of the presented approach for graphlets of
different sizes for compression efficiency and compres-
sion/decompression times and investigate the limitations
when compressing meshes with different topologies.

1 Introduction
Polygonal models are widely used for representing 3D
objects in computer graphics. With increased rendering
systems capabilities and the desire for greater realism and
scene precision, the size of these models has been in-
creasing. To cut down transmission and static storage
costs, specialized compression schemes have been de-
veloped. In previously established terms as presented
by Magloet al. [8], this paper focuses on lossless single-
rate global compression of static polygonal models. This
means that we consider fixed (non-temporarily-evolving)
data, which is decompressed all at once (without progres-
sive transmission at different levels of detail) and in its
entirety (not focusing on specific regions of the model as
requested by the user).

The information we usually store is the model’s ge-
ometry (positions of vertices), connectivity (incidence re-
lations among elements), and optional additional attributes
(normals, colors, etc.) [7]. The connectivity informa-
tion typically takes up the most space – around twice
as much as the vertex position information in a trian-
gle mesh homeomorphic to a sphere [11], so it is the
most important to compress. The vertex-to-vertex con-
nectivity relations, also known as the wireframe W or
the 1-skeleton, can be represented as an undirected graph.
Thus, we can reduce our problem to graph compression,
although this loses some information, such as face orien-
tation (see section 4).

Instead of the wireframe, we could theoretically com-
press the face-to-face adjacency graph, which is the dual
graph of the wireframe, W ∗. Assuming W is a planar

graph, we could restore it at decompression by computing
the dual of W ∗ again, since in general for a (connected)
planar graph G holds the following (G∗)∗ = G. How-
ever, this would inflate the typical face-list mesh format
unless we could develop more compact face descriptors
than vertex lists. If we are willing to give up the vertex-
to-attribute mapping (and e.g.infer positions with a lay-
out algorithm), we can compress the connectivity infor-
mation independently from any vertex data. In this case,
compressing the face incidence graph may be a viable
option since we do not have to list the vertices of each
face; we need an arbitrary face identifier. However, this
is not something we consider in this paper since it does
not appear to be a common use case in 3D graphics.

Typically, compression methods focus exclusively on
manifold triangle meshes or another constrained struc-
ture, whereas we consider arbitrary polygonal models.
The performance of mesh connectivity compression meth-
ods is typically measured as connectivity bit rate in terms
of bits per vertex (bpv). Our main focus is higher-level
data representations, with no attempt at optimal encoding
at the bit level. Thus, a thorough comparison with state-
of-the-art is out of the scope of this paper, but for com-
pleteness, note that Khodakovsky et al. [6] have shown a
provably near-optimal encoding of polygonal manifolds
achieving around 1.8 bpv on average.

1.1 Mesh File Formats
A typical mesh file format (e.g.OFF [9], PLY [12]) has
a header with metadata, followed by the vertex informa-
tion, and finally, the connectivity information. The con-
nectivity is encoded as a list of faces, where each face is
a list of vertex indices. Within a face, we have one ver-
tex index per edge, but usually, most edges are shared be-
tween two faces (assuming relatively few boundary edges).
This means we have about two vertex indices per edge,
a baseline for storing graphs, which we aim to improve
with compression. We decided to support the compres-
sion and decompression of PLY files since they are widely
adopted and relatively simple in structure. Note that the
method is general and not bound to the PLY format. PLY
comes in two forms: compact binary and human-readable
ASCII. When reporting compression rates, we consider
the binary format for a fair comparison with our com-
pressed files.
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2 Graphlet-based Compression
We compress the wireframe by successively replacing gra-
phlets (small induced subgraphs), as found by a subgraph
isomorphism solver, with their more compact represen-
tations. Our algorithm follows the structure of [1, Algo-
rithm 1], except for the graphlet encoding scheme. Where-
as Čibej and Mihelič used their so-called symmetry-com-
pressed graph representation, we opted for a simple dict-
ionary-based approach.

A graph G is defined to be symmetry-compressible
(SC) if it can be more succinctly represented with a resid-
ual graph Gπ and an automorphism π of G. Here, Gπ

is the minimal set of edges required to reconstruct G by
applying π to its edges until all permutation cycles are
closed. The compression procedure loops through a pre-
computed list of SC graphlets with n ≤ nmax nodes. For
each graphlet G′, it greedily extracts a maximal edge-
disjoint set of subgraphs isomorphic to G′, to be replaced
by their SC representations. As a heuristic, the graphlets
are first sorted in decreasing order of relative compression
efficiency to make sure that highly compressible ones are
found before any of their edges have already been re-
moved.

Instead of encoding a subgraph H ∼= G′ with (π,Hπ),
we opted to store the index of G′ in a graph atlas [10] (a
systematic enumeration of all undirected graphs up to a
certain number of nodes nmax) along with a mapping be-
tween nodes of H and G′ (which have an agreed-upon
order within each G′). Taking only 1 + n integers, this is
always at least as efficient as the SC representation of G′

since encoding of π alone requires at least n integers (bar-
ring a much more efficient permutation encoding than the
one proposed in [1]). Thus, there is no reason to combine
the representations, using the atlas for some graphlets and
symmetry compression for others.

This approach may be seen as a sort of instancing on
a sub-mesh level. A graphlet instance refers to an iso-
morphic version of itself in the atlas, but for each, we
have to store a separate vertex mapping (analogous to the
coordinate transform in the case of classical instancing).
This improvement requires an agreed-upon dictionary be-
tween the encoder and decoder – atlas, which is unneces-
sary in symmetry compression, plus the auxiliary space
the atlas takes in memory. We used the 1253 graphlets
with n ≤ 7 as provided by Python’s networkx library [3].
This size limitation is not much of a practical concern, as
searching for even larger subgraphs results in prohibitively
long compression times.

We define the relative efficiency of an atlas-based en-
coding as

δr(G) = 1− 1 + n

2m
, (1)

for a graphlet G on n nodes with m edges (analogous to
the same definition for an SC encoding [1, Section 4]),
which may be used for sorting template graphlets before
compression.

Let us define atlas-compressible (AC) graphs as ones
that can be encoded this way more compactly, meaning
δr(G) ∈ (0, 1). While most connected graphlets with

up to 9 nodes are SC [1, Table 2], many are not. This
includes the most common structure found in polygonal
meshes, the triangle [1, Theorem 3]). The good news is
that the triangle has δr(K3) > 0, meaning it is atlas-
compressible. Even better, it turns out that all connected
graphs with n ≥ 4 are AC.

Proof: We must show 1+n
2m < 1 for n ≥ 4. For a

connected graph we have m ≥ n− 1, so 1+n
2m ≤ m+2

2m <
m+3
m+m ≤ 1 since m ≥ n− 1 ≥ 3 for n ≥ 4.

2.1 Compressed file format
The compressed mesh is serialized to a binary file as fol-
lows. First, the header and vertex data are copied from
the original PLY into their own file. Next, the atlas-com-
pressed connectivity data is written to another file as a
series of 4-byte unsigned integers. First come the resid-
ual (uncompressed) edges as pairs of vertex indices, pre-
ceded by the actual number of such edges. Finally, AC
representations of the compressed subgraphs are stored.
The most direct encoding would store the atlas index and
node mapping for each subgraph independently (note that
we can infer the size of a graphlet, and thus the length of
the mapping, from its index). But this approach dupli-
cates the same atlas index many times if graphlets often
reoccur in the mesh, which indeed we observed on the
meshes we tested. So instead we used an index multi-
plicity encoding, where each unique atlas index is stored
along with the number of times it occurs in the mesh, fol-
lowed by this many vertex mappings.

In theory, this encoding is better than the direct one
if the total number of compressed graphlets is more than
twice the number of unique atlas indices; in other words,
if the average graphlet frequency is more than 2. This
threshold was significantly exceeded in all our experi-
ments, so we use this encoding unconditionally. Other-
wise, we could have used a hybrid approach, where we
fall back to the direct encoding if the average index mul-
tiplicity is too low. This requires an extra bit in the binary
to signal how it should be decoded.

Note that 4 bytes are excessive for some of these in-
tegers, certainly the atlas indices, which only go up to
1252 when nmax = 7. We also precede the atlas-encoded
file segment with the number of unique indices (which is
technically redundant) for the purposes of convenient de-
coding. We made no attempt at the most efficient binary
encoding possible, leaving this for future work.

2.2 Experiments
We have tested our implementation on a set of sample
meshes provided with MeshLab (available at meshlab.
net/#download). Table 1 shows compression per-
formance on non manif hole.ply, a non-manifold
mesh with 755 triangles. We defined relative compres-
sion efficiency over the whole wireframe W as the rel-
ative decrease in the number of integers needed for our
encoding (Section 2.1) compared to the baseline of 2m
for a mesh containing m edges. Just as equation 1, this is
a value from 0 to 1 where higher is better. The compres-
sion time was recorded with a pure Python implementa-
tion running on a Ryzen 7 5800X3D. Evidently, having

meshlab.net/#download
meshlab.net/#download
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Table 1: Compression performance for model
non manif hole.ply with different nmax (maximum
graphlet size). Relative efficiency δr is computed over the
whole wireframe, Rconn is the compressed-to-original size
ratio for the connectivity data, Rtotal is the ratio for the entire
PLY file.

nmax δr(W) Rconn (%) Rtotal (%) time (s)

4 0.534 45.0 64.2 0.4
5 0.564 42.1 62.3 2
6 0.596 39.0 60.3 17
7 0.633 35.4 57.9 185

Table 2: Compression performance on more sample meshes for
compression metrics reported with nmax = 4 and nmax = 5.

name triangles δr(W) time (s)
nmax = 4 nmax = 5 nmax = 4 nmax = 5

bunny2 1000 0.522 0.576 0.5 3
bunny10k 9999 0.531 0.584 4 39
bunny70k 69451 0.537 0.580 31 306

screwdriver 13574 0.534 0.581 7 59

access to graphlets with sizes up to 7 is sufficient be-
cause compression time is already approaching the limits
of practicality.

Table 2 shows compression performance on other Mesh-
Lab sample meshes. We have only shown the relative
efficiency since this tells us how appropriate atlas-based
compression is for polygonal models. Raw compression
ratios are not listed, as they are not so informative given
our inefficient binary serialization and the fact that we left
vertex data entirely uncompressed.

3 Bipartite Subgraph Completion
We explored the use of bipartite subgraph completion for
mesh wireframe compression. The algorithm is based on
the slightly extended notion of near symmetry-compressi-
ble (NSC) graphs, which can be made SC by removing
and/or adding a few edges. The idea is to repeatedly find
near-complete bipartite subgraphs of G (which have high
relative efficiency) and replace them with their NSC rep-
resentation. These are found using a greedy optimization
starting from each graph vertex.

Though this algorithm generally runs faster than the
isomorphism matching approach described previously, un-
fortunately, it yields comparatively poor relative efficiency
(around 0.1 to 0.15 for the meshes we tested), so we did
not pursue this direction further. These results may be
explained by the fact that typical polygonal meshes are
planar or locally plane-like (they have Euler characteris-
tics close to 2) since they model object surfaces. A com-
plete bipartite graph Kn,m with n ≥ 3 and m ≥ 3 can-
not be planar according to Wagner’s theorem. Therefore,
the only complete bipartite subgraphs that may frequently
appear in polygonal models are K1,m (a star), and K2,m,
but the former is not NSC. The vast majority of extracted
subgraphs we observed in meshes were K2,2, i.e. a 4-
cycle. The NSC representation of this graphlet only has
relative efficiency 0.125, which explains the poor global
efficiency ratios.

4 Mesh Reconstruction
When it comes to reconstructing the original mesh, de-
compressing the wireframe is hardly the end of the story.
To produce a list of faces (as in the original file), we need
to compute the facial walks of the wireframe. In the case
of a regular mesh (with all faces having the same degree),
we can enumerate all simple cycles of this length. This
has time complexity O((f+n)(d−1)kd) for a graph with
n vertices, f faces of degree d, and average vertex degree
k. Even though k < 6 for planar graphs, this can still
take quite a while for large meshes. For the 10,000 trian-
gle bunny mesh listed in Table 2, this took 3 entire min-
utes. Otherwise, if we are enumerating cycles of varying
degrees, we need to ensure that all faces of non-minimal
degree are chordless, i.e. they do not have any diagonals.
This even further increases decompression time. Note
that our tool does not currently support decompression
of such non-regular meshes.

There is also the issue of internal cycles, whose corre-
sponding faces would end up inside the mesh (just under
the surface). In practice, virtually all meshes represent
surfaces. Therefore, it seems reasonable to assume these
were not present in the original mesh. Going with this as-
sumption, we identify all such false positives as the faces
with all edges incident on more than two total faces and
remove them at decompression. Ideally, our tool would
detect such edge cases and encode them explicitly in a
header of the compressed file instead of making assump-
tions.

The facial walks also lack a crucial piece of informa-
tion: face orientation. We can think of this as a clock-
wise or counter-clockwise vertex ordering. This informa-
tion is needed by renderers to compute the surface nor-
mals (for shading etc.) and to decide which faces are
front-facing. We are faced with a trade-off: either we
put the burden of computing proper orientations on the
system rendering the mesh, or we reduce the utility of the
compressor by explicitly storing them (inflating space) or
somehow computing them at decompression (increasing
its runtime). We have observed that Blender 4.0 can fix
inconsistent face orientations automatically, but Mesh-
Lab 2023.12 did not attempt to do so, resulting in in-
correct shading on about half of the faces if we do not
address the issue.

We have only implemented a solution for orientable
triangle meshes, where we can arbitrarily fix the orien-
tation of one face (on each connected component) and
propagate it to the rest of the mesh without producing
inconsistencies. While this could be easily extended to
general orientable manifolds, we would need a different
method for all other meshes. A reasonable option might
be using a point-cloud normal estimation technique (such
as [4, Section 3.3]) on the underlying vertices.

If we wanted to preserve orientations exactly as they
were in the original file, we could append them to the
compressed binary as a bit-vector, but this requires a re-
producible ordering of faces (e.g., rank in lexicographic
ordering). This is a worthwhile direction to pursue in the
future since such an ordering would allow us to carry over
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Figure 1: Holes at the base of the bunny2.ply mesh. The
leftmost one, consisting of a single triangle, cannot be inferred
from the wireframe alone. The rest are kept in the reconstructed
mesh since their boundaries are longer than 3, while the single-
face hole is erroneously patched up.

arbitrary face data (like colors) that can appear in PLY
files. Devising a reproducible ordering of faces comes
with the issue of single-face holes (see Fig. 1). Since
these cannot possibly be inferred from the wireframe alone,
we would need to find them before compressing the mesh
and encoding them explicitly. To that end, we could enu-
merate all cycles in the wireframe and check which are
not present as faces in the original mesh. However, our
existing face enumerator would significantly increase com-
pression time. This is such a niche case that we have
simply ignored for now, which results in such holes be-
ing patched up in the decompressed mesh.

5 Conclusion
We have implemented a prototype PLY-format mesh com-
pression tool [5] which can compress the connectivity
data of a moderately sized mesh to around 45% of its
original size in a reasonable time. Aside from inefficient
serialization (Section 2.1) and reconstruction limitations
(Sec. 4), there are still many things to work on before it
becomes fit for general use.

The class of near-symmetry compressible graphs men-
tioned in section 3 is a general formulation from which
we could derive many domain-specific algorithms. Un-
fortunately, the bipartite completion algorithm turns out
to be unsuited for the graphics domain, but we could de-
velop something more tailored to the structure of polyg-
onal meshes. For example, if we limit ourselves to mani-
folds or, even further, to triangular or quadrangular man-
ifolds, we may be able to find highly compressive sym-
metries. Alternatively, the assumption of a (near-)planar
graph may allow us to speed up certain computations like
facial walk enumeration and reduce the search space for
compressible features (e.g., filter out non-planar graphlets
in a matching algorithm). The heuristic sorting of graph-
lets could also account for common graphlet frequencies
in this domain, which we have observed to be very skewed.
A more informed heuristics may allow us to break out of
the loop over graphlets early (based on a heuristic value
threshold) without severely impacting the final compres-

sion ratio. This way, we could consider even larger graph-
lets that can be (potentially) more dense, which increases
the efficiency (1) of their AC representation.

A more comprehensive evaluation of our compressor
is required. Since the efficacy of this kind of compression
is very much dependent on the density of the mesh, we
would like to observe performance metrics with respect
to mesh density. To make these metrics comparable, we
should use meshes of the same object with different levels
of tessellation. An appropriate tool for generating such a
series from a point cloud might, for example, be a Čech
filtration [13, p. 62].

Our approach is limited to the simplest case of loss-
less single-rate global compression of static data. How-
ever, it may naturally be extended to other compression
modalities. For example, lossy compression could be
achieved by replacing graphlets with similar ones that can
be represented more compactly based on human percep-
tion. Such perceptual metrics have been studied in the
literature [2].
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