
ERK'2024, Portorož, 432-435 432

Influence of the feature threshold in Evolutionary Feature
Selection

Uroš Mlakar
University of Maribor, Faculty of Electrical Engineering and Computer Science

E-mail: uros.mlakar@um.si

Abstract
Evolutionary feature selection is a process employed in
various fields to identify the most informative features
for predictive modeling. The threshold parameter plays
a crucial role in determining the selection pressure on
features during the evolutionary process. This paper in-
vestigates the influence of the feature selection threshold
in five popular evolutionary and swarm intelligence al-
gorithms. The experiments are conducted on diverse UC
Irvine datasets, with a detailed analysis on how varying
threshold values impact the feature selection outcomes,
including predictive accuracy of the trained model, the
final feature subset size, and convergence properties of
the used algorithms. The obtained results are statistically
evaluated and suggest using a different threshold value,
then the one commonly used in the literature.

1 Introduction
Feature selection is a important process in machine learn-
ing and data analysis domains, aimed at identifying a sub-
set of relevant features from a larger set of variables to
improve model performance, reduce computational com-
plexity, and enhance the interpretability of the problem
being solved [1, 8]. Many Evolutionary (EA)[4] and Swarm
Intelligence (SI) [2] algorithms have been successfully
applied for automating the process of feature selection by
mimicking natural selection principles in various animal
species [11, 5]. While EAs offer a promising approach,
the selection pressure of the evolutionary process heavily
relies on various parameters, among which the threshold
parameter plays a pivotal role. The threshold parameter
defines the criterion for selecting features during the evo-
lutionary process, influencing the convergence behavior,
solution quality, and computational efficiency of the fea-
ture selection algorithm.

In this paper, we investigate the significance of the
threshold parameter in evolutionary feature selection meth-
ods. We explore its impact on the quality of the fitness
function, and the final feature subset size. Additionally,
we investigate how different threshold values affect the
convergence characteristics of a specific evolutionary fea-
ture selection algorithm.

This paper is structured as follows. Section 2 presents
the idea of evolutionary feature selection. Then in Sec-
tion 3 the experiment design is detailed. Experimental

results are discussed in Section 4, and the paper is con-
cluded with future work directions in Section 5.

2 Evolutionary feature selection
Evolutionary feature selection is an application of an EA
or SI algorithms for the problem of feature selection [11].
The selected EA or SI algorithm maintains a population
of solutions xi = {xi,j} for i = 1, . . . , Np; j = 1, . . . , D,
where Np denotes the population size, and D is the di-
mension of the problem being solved. In the case of fea-
ture selection D is usually set to the number of features
in the dataset.

According to the problem for which the algorithm
was designed, the solution representation is an important
factor for the success of finding an optimal solution. In
feature selection, the problem of a solution representa-
tion is straightforward, since the number of features in a
dataset corresponds to the dimension of a solution vec-
tor xi. Two representations of a solution are commonly
found in literature for the problem of feature selection:
binary and real-coded [8]. Since the majority of EA and
SI algorithms are designed to work with continuous prob-
lem domains, the real-coded representation is also mostly
used for feature selection, where the presence of a fea-
ture is determined by mapping the element in the solu-
tion space to a predefined interval. Most frequently, the
search space is defined within the interval [0, 1], there-
fore a feature is selected if the value of an element xi,j is
greater then a specified threshold, which is usually set to
0.5. This can be mathematically expressed as:

xs = {xi,j > threshhold}. (1)

The resulting vector xs contains all the features, which
are selected for the current solution xi. To evaluate the
performance of the current selected feature subset xs, a
classifier is trained on the selected training dataset using
cross validation with these selected features. In the case
of a wrapper-based approach, the classifiers k-Nearest
Neighbor (KNN) is commonly used in literature. There-
fore a fitness function for the feature selection problem
can be defined as:

f(xi) = cross validation(classifier, xs) (2)

When the algorithm run is over, the best performing
feature subset is trained on the whole training set using



433

the selected classifier, and the final results are reported as
the performance of the trained classifier on the testing set.

3 Experiment design
All experiments for this work were performed on a desk-
top computer with the following configuration: Intel(R)
Core(TM) i9-10900KF CPU @ 3.70GHz, with 65 GB
and operating system Linux Ubuntu 22.04 Jellyfish op-
erating system. The software was written in the python
programming language, utilizing the Niapy library [10]
for the implementation of the EA and SI algorithms. The
commonly used datasets in feature selection problems,
listed in Table 1, were used for evaluating the impact
of different selection thresholds [3]. Let us notice that
the selected datasets exhibit different numbers of features
(4-166), instances (178-1728) and classes (2-7). Each
dataset in this study was split randomly into training and
testing sets, with 80% of samples going to the training
and 20% to the testing set, while also ensuring an equal
distribution of classes.

Many EA and SI algorithms have been applied to dif-
ferent problems over the last couple of years, also in-
cluding feature selection. Among the most common are
Particle Swarm Optimization (PSO) [7], Bat Algorithm
(BA) [12], Differential Evolution (DE) [9], Cuckoo Search
(CS) [13] and Artificial Bee Colony (ABC) [6], which
were also considered for our evaluation. The parameters
of the mentioned algorithms used in the experiments were
set as reported in their respective papers.

Because of the stochastic nature of EA and SI algo-
rithms, each experiment run for a selected algorithm was
repeated 30 times. To make the comparison fair, the ter-
mination condition for all algorithms was set to 100 gen-
erations, using a starting population size Np = 30. Due
to its high computational efficiency, we chose the KNN
classifier (N=5) in the experimental work.

Table 1: Datasets used during experimental work.

Dataset #Features #Instances #Classes
balance scale 4 625 3

car 6 1728 4
autompg 7 392 3

wine 13 178 3
segmentation 19 210 7

german 20 1000 2
ionosphere 34 351 3

vehicle 51 845 4
sonar 60 208 2

hill valley 100 1212 2
musk1 166 476 2

4 Results
In this section, we present a comprehensive analysis of
the results obtained by the application of different feature
selection thresholds in several evolutionary and swarm
intelligence algorithms. The following experiments were
performed:

• influence of the feature selection threshold on the
fitness function for a specific algorithm.

• influence of the feature selection threshold on the
length of the obtained final feature subset for a spe-
cific algorithm.

• influence of the feature selection threshold on the
convergence characteristics of the used algorithms.

All mentioned experiments are presented in detail in the
remainder of this section. All experiments are reported in
terms of the Friedman and Wilcox non-parametric statis-
tical tests.

4.1 Fitness function analysis
The goal of the first experiment was to analyze how a
particular feature selection threshold value influences the
quality of the selected feature subsets, based on the re-
ported fitness values of an EA or SI algorithm. Four dif-
ferent threshold values were employed in this experiment
(thresholds = {0.4, 0.5, 0.6, 0.7}) for each of the ob-
served algorithms. Since this is a pilot study, the thresh-
olds, were selected empirically. Therefore each algorithm
was executed 30 times for each dataset. The averages of
these 30 runs over all datasets are reported in terms of
average fitness values and standard deviation in Table 2.
Values marked in bold face indicate the best algorithm for
a specific threshold value, while the underlined value de-
notes the best threshold for a specific algorithm. It seems
that the best performing algorithm among the selected is
the DE regardless of the threshold value. Considering the
threshold value, the best results were obtained with the
threshold value of 0.7 on all considered algorithms, ex-
cept for the PSO.

The results were also statistically evaluated using the
Friedman and Wilcoxon tests. In essence, the statistical
tests comparison involved four classifiers (the results ob-
tained using different threshold values) based on 275 ele-
ments. Each classifiers size was derived from the product
5 × 5 × 11, where the first number represents the number
of algorithms considered, the second denotes the num-
ber of statistical measures taken into account (i.e., mean,
standard deviation, minimum, maximum, and median),
and the third is the number of used datasets in the study.
The results of the Friedman tests are displayed graphi-
cally in Fig. 1. The results of the Nemenyi post-hoc test
are represented as critical difference intervals, where the
results of two methods are statistically significant if their
critical difference intervals do not overlap. The results of
the Wilcoxon tests are gathered in Table 3. Let us notice
that a higher Friedman rank denotes better performance.

According to the results, we can infer that a higher
threshold value is preferred, at least in the pool of the se-
lected comparing algorithms. This fact is also supported
by the statistical tests. The threshold value of 0.7 was
ranked highest by the Friedman test, and a statistically
significant difference is found when compared to other
threshold values.



434

Algorithm
Threshold

0.4 0.5 0.6 0.7

PSO 0.1744±0.0069 0.1737±0.0085 0.1725±0.0089 0.1726±0.0107
BA 0.1759±0.0077 0.1742±0.0073 0.172±0.0075 0.1716±0.0096
DE 0.1676±0.0031 0.1669±0.0032 0.1663±0.0029 0.166±0.0032
CS 0.1733±0.0033 0.1715±0.0033 0.1702±0.0036 0.1682±0.0035

ABC 0.1837±0.0058 0.1812±0.0047 0.179±0.0056 0.1775±0.0062

Table 2: Numerical results for the fitness function study.

Figure 1: Graphical representation of Friedman critical dis-
tances for the fitness study on using different feature selection
threshold values.

thr 0.4 0.5 0.6 0.7
0.4 ∞ ≪ 0.05 ≪ 0.05 ≪ 0.05
0.5 - ∞ 0.32 0.15
0.6 - - ∞ 0.26
0.7 - - - ∞

Table 3: Results of the Wilcoxon test for the fitness study on
using different feature selection thresholds values.

4.2 Subset feature length analysis
The goal of the second experiment was to test how a par-
ticular feature selection threshold value influences the fi-
nal size of the selected feature subsets. The same thresh-
old values were employed in this experiments for each of
the observed algorithms. As in the previous experiment,
the results are presented as averages of 30 runs over all
datasets and are reported in terms of average feature size
values and standard deviations in Table 4.

The results in Table 4 indicate that the lowest feature
subsets are obtained using a higher threshold value for
all considered algorithms. This is also supported by the
statistical tests presented in Fig. 2 and Table 5. A higher
threshold value translates to a higher selection pressure
in the algorithm’s search space, so these results are some-
what expected.

4.3 Convergence analysis
The goal of the last experiment was to analyze the con-
vergence properties of all selected algorithms considering
different feature selection threshold values. The conver-
gence graphs are presented in Fig. 3. Each subplot shows
the converge plots (using different threshold values) for
a selected algorithm on a specific dataset. The converge

Figure 2: Graphical representation of Friedman critical dis-
tances for the feature subset size study on using different feature
selection threshold values.

plots show that higher threshold values tend to converge
faster, and while also achieving better results.

5 Conclusion
This paper investigates the importance of the feature se-
lection threshold in EA and SI algorithms when applied
in classification problems. The proposed methodology
was tested using five commonly used algorithms in the
literature on popular feature selection datasets. The im-
pact of the feature selection threshold was analyzed by
considering the results of fitness values of the objective
function and the final feature subset sizes. The obtained
results were also statistically evaluated. Our findings show
that there is a statistically significant deviation in the re-
sults according to the commonly chosen value of 0.5,
therefore a large scale study is needed to further analyze
these conclusions.

Future work will encompass a large scale study on
more recent state-of-the-art algorithms, while also con-
sidering more experimental datasets. Additionally differ-
ent fitness functions will be considered, where the fea-
ture subset size is included, since an obvious connection
among the classification accuracy and feature subset size
was detected in the experiments.

Acknowledgments
This work was supported by the Slovenian Research and
Innovation Agency (Programme No. P2-0041)

References
[1] Qasem Al-Tashi, Said Jadid Abdul Kadir, Helmi Md Rais,

Seyedali Mirjalili, and Hitham Alhussian. Binary opti-



435

Algorithm
Threshold

0.4 0.5 0.6 0.7

PSO 21.3939±2.4844 19.8182±2.4151 18.8879±2.473 17.7818±2.4605
BA 23.4273±2.4921 20.097±2.4677 17.1758±2.3617 13.8848±2.5165
DE 20.2879±1.9437 18.8485±1.9614 17.3303±2.0085 15.7576±2.0964
CS 22.1818±2.3522 19.4939±2.1419 16.6303±2.0509 13.903±1.9636

ABC 24.0606±2.0533 20.3394±2.0127 16.4242±1.923 12.9182±1.7245

Table 4: Numerical results for the feature subset size study.

Figure 3: Convergence analysis of each algorithm when considering all feature selection threshold values.

thr 0.4 0.5 0.6 0.7
0.4 ∞ ≪ 0.05 ≪ 0.05 ≪ 0.05
0.5 - ∞ ≪ 0.05 ≪ 0.05
0.6 - - ∞ ≪ 0.05
0.7 - - - ∞

Table 5: Results of the Wilcoxon test for the feature subset size
study on using different feature selection thresholds values.

mization using hybrid grey wolf optimization for feature
selection. Ieee Access, 7:39496–39508, 2019.

[2] Christian Blum and Daniel Merkle. Swarm intelligence:
introduction and applications. Springer Science & Busi-
ness Media, 2008.

[3] Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017.

[4] Agoston E. Eiben and James E. Smith. Introduction to
Evolutionary Computing. Springer-Verlag, Berlin, 2003.

[5] Miguel Garcı́a-Torres, Roberto Ruiz, and Federico Div-
ina. Evolutionary feature selection on high dimensional
data using a search space reduction approach. Engineering
Applications of Artificial Intelligence, 117:105556, 2023.

[6] Dervis Karaboga. An idea based on honey bee swarm
for numerical optimization. Technical report, Technical
report-tr06, Erciyes university, engineering faculty, com-
puter engineering department, 2005.

[7] J. Kennedy and R. Eberhart. Particle swarm optimization.
In Proceedings of ICNN’95 - International Conference

on Neural Networks, volume 4, pages 1942–1948 vol.4,
1995.

[8] Uroš Mlakar and Iztok Fister. Impact of solution represen-
tation in nature-inspired algorithms for feature selection.
IEEE Access, 8:134728–134742, 2020.

[9] Rainer Storn and Kenneth V. Price. Differential evolution
– a simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization,
11:341–359, 1997.

[10] Grega Vrbančič, Lucija Brezočnik, Uroš Mlakar, Dušan
Fister, and Iztok Fister Jr. NiaPy: Python microframework
for building nature-inspired algorithms. Journal of Open
Source Software, 3, 2018.

[11] Bing Xue, Mengjie Zhang, Will N Browne, and Xin Yao.
A survey on evolutionary computation approaches to fea-
ture selection. IEEE Transactions on evolutionary compu-
tation, 20(4):606–626, 2015.

[12] Xin-She Yang and Amir Hossein Gandomi. Bat algo-
rithm: a novel approach for global engineering optimiza-
tion. Engineering Computations, 29(5):464–483, 2012.

[13] Xin-She Yang and Amir Hossein Gandomi. Cuckoo
search: recent advances and applications. Neural Com-
puting and Applications, 24(1):169–174, 2014.


