
ERK'2024, Portorož, 383-387 383

Very Large Scale Global Optimization with Randomised
Optimisation Algorithms in DAPHNE

Aleš Zamuda
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Computer Science

Koroška cesta 46, 2000 Maribor, Slovenia
ales.zamuda@um.si

Globalna optimizacija zelo velikih dimenzij
z naključenimi optimizacijskimi algoritmi v

DAPHNE
Povzetek — Ta članek predstavlja globalno optimiza-

cijo zelo velikih dimenzij (GOZVD) z naključenimi op-
timizacijskimi algoritmi (NOA) v DAPHNE (Integracija
kanalov za analizo podatkov za upravljanje velikih po-
datkov, HPC in strojno učenje). Najnovejša programska
oprema iz DAPHNE repozitorija daphne na računu Gi-
tHub daphne-eu, z uporabo zadnje veje main iz ju-
lija 2024 (548ea01), je prevedena in nameščena na su-
perračunalniku EuroHPC Vega v Mariboru, Sloveniji.
Namestitev je nato pognana z uporabo Slurma za izvedbo
niza zagonov ROA z različnimi razredi nastavitev, ob po-
večevanju števila optimiziranih parametrov na sto tisoč.
Nazadnje so poročani in analizirani še novo dobljeni ra-
čunski rezultati iz zagonov ROA.

Abstract — This paper presents the Very Large Scale
Global Optimization (VLSGO) in context of Randomised
Optimization Algorithms (ROA) in DAPHNE (Integrated
Data Analysis Pipelines for Large-Scale Data Manage-
ment, HPC, and Machine Learning). The latest software
from DAPHNE repository daphne at the GitHub acco-
unt daphne-eu, using the last July 2024 commit to the
main branch (548ea01), is compiled and deployed on
EuroHPC Vega supercomputer in Maribor, Slovenia. The
compilation is then deployed using Slurm to execute a set
of ROA runs with different configuration classes for VL-
SGO, increasing the optimized parameter sizes. Finally,
the newly obtained computational results from ROA runs
are reported and analysed.

1 Introduction
This paper presents the Very Large Scale Global Opti-
mization (VLSGO) in context of Randomised Optimiza-
tion Algorithms (ROA) in DAPHNE (Integrated Data

This work is supported by project DAPHNE (Integrated Data Anal-
ysis Pipelines for Large-Scale Data Management, HPC, and Machine
Learning) funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957407, locally co-
ordinated by AZ at University of Maribor (UM, www.um.si). AZ also
gratefully acknowledges the HPC RIVR consortium (www.hpc-rivr.si)
and EuroHPC JU (eurohpc-ju.europa.eu) for also funding this research
by providing computing resources (S24V01-03) of the HPC system
Vega at the Institute of Information Science (www.izum.si).

Analysis Pipelines for Large-Scale Data Management,
HPC, and Machine Learning) [1–4]. VLSGO as char-
acterized in this paper is with ten thousand floating-point
encoded parameters dimension sizes and above, where
ROA with large population sizes are applied as well (here,
in size of a thousand). When benchmarking ROAs, they
also need to be run multiple times, with independent and
different random number seeds, because ROAs can be
statistically evaluated only with aggregated statistics from
these independent runs [5], to further use this in Machine
Learning [6].

Some results were already presented at [7, 8] and are
now extended to VLSGO and more recent DAPHNE soft-
ware. Progress on High-Performance Computing (HPC),
with DAPHNE, and Computational Intelligence (CI, as
defined through IEEE CIS [9]) in Slovenia has also pre-
viously been reported in e.g. [10–12], and with EuroHPC
Vega the use of HPC with latest CI and DAPHNE has be-
come more accessible. Therefore, this paper benchmarks
the latest progress in ROA and DAPHNE with Vega,
where latest July 2024 compilation, deployment, and re-
sults from DAPHNE is performed, where a ROA algo-
rithm is executed on VLSGO.

In the next section, the related work is described, then
the methods are described in Section 3. Section 4 pro-
vides the results and Section 5 the conclusion.

2 Related Work
ROA in DAPHNE has already been identified as an op-
portunity to scale structures like matrices in [10] and an
implementation was also deployed on EuroHPC Vega [7],
implemented in DaphneDSL [13]. Additionally to be a
partner in the DAPHNE project, the decision to choose a
HPC DSL is substantiated further especially after consid-
ering that University of Maribor is part of SLING (Slove-
nian National Supercomputing Network), the coordina-
tion body of various HPCs in Slovenia, including the first
EuroHPC supercomputer [14], the Vega with 240 A100
GPUs and 122 thousand CPU (Central Processing Unit)
cores [15]. More about how to deploy ROA in DAPHNE
on EuroHPC was already presented in [7] and more about
DAPHNE in Maribor is in [4, 7, 10, 12, 15–17].

The DaphneDSL syntax [13] is inspired by C/Java-
like languages and the DSL is a case-sensitive language
inspired by ML systems as well as languages and libraries

384

for numerical computation like Julia, Python NumPy, R,
and Apache SystemDS DML [18], but also with compiler
hints for data/operator placement (i. e. local/distributed,
CPU/GPU/FPGA, computational storage, still in experi-
mental state and not guaranteed by the compiler) [13].

2.1 Population-based Randomised Optimization Al-
gorithms

Population-based ROAs are surveyed in works like [19–
26], with several CI applications like [24,27–30]. A sam-
ple ROA consists of e.g. an evolutionary loop [31], within
which are evolved new population D-dimensional pop-
ulation vectors xi, ∀i ∈ {1, 2, ...,NP}. During each
generation step number g ∈ {1, 2, ..., G}, on the popu-
lation, computational operators are performed like mu-
tation, crossover, and selection, until a termination cri-
terion is satisfied, like a fixed number of maximum fit-
ness evaluations (MAX FES). ROA has also been win-
ning competitions at GECCO [32] and applied in con-
text of HPC in works like [33], where a large number
of fitness evaluations was executed. Also, parallelization
of benchmarking using HPC, from text summarization in
natural language processing, glider piloting in deep-sea
missions, and search algorithms in computational intel-
ligence has been presented in [12] and then reflected for
generative AI in [11]. As indicated further for [34], “Tra-
ditionally, single objective benchmark problems are also
the first test for new evolutionary and swarm algorithms,”
therefore in this paper a challenging single-objective op-
timisation function HappyCat [35] is applied to test a
ROA on VLSGO, where the fitness evaluation of a nu-
merical input vector x is computed by the function f =((∑(

x2
)
− 10

)2)0.125

+
(∑(

x2
)
/2 +

∑
(x)

)
/10 + 0.5.

3 Methods: VLSGO with ROA in DAPHNE
The latest software from DAPHNE repository daphne
at the GitHub account daphne-eu using the last July
2024 commit to the main branch 548ea01 as seen in
Figure 2, is compiled as seen in Figure 3 taking several
hours to compile and deployed on EuroHPC Vega su-
percomputer in Maribor, Slovenia. This compilation is
also possible much faster due to CMake, parallel in min-
utes, if adding more compute resources, while recompi-
lations during development of reprogrammed code parts
are down to seconds and well supported in open or closed
source code editors like Vim and Qt Creator, or Visual
Studio Code. The DaphneDSL code snippet to evaluate a
fitness function f is provided in Figure 1: the arithmetics
is listed in line 2, while the function definition and in-
put type parameter x is defined as matrix<f64>, a 64-
bit floating-point matrix, processed with the DaphneDSL
kernel operations (see [7] for their list in f on CPU).

The compilation is deployed using Slurm and large
maximum stack size, to execute a set of ROA runs with
different configuration classes for VLSGO (line 1: scaled
from scale level S = 1 to S = 10), increasing the opti-
mized parameter sizes (line 3: dimensions per ten thou-
sand) and the allowed runtime according to this increase
(line 8: 288 minutes per scaling level S, which is 28880

minutes for D = 100.000, i.e. two days for the largest
configurations expecting to run the longest) as seen in
Figure 4. If rerun with same parameters, algorithm re-
sults are reproducible and provide same output numbers.

4 Results
The optimisation results from the ROA runs (fitness

convergence through generations) as explained in the abo-
ve deployment preparation, are presented in Figure 5 as a
set of convergence graphs, in configurations with dimen-
sions D = 1000 and population sizes NP from 10.000
to 100.000 in increases of 10.000 as the scaled parameter
classes (S from 1 to 10), capped up to the allocated time
limit for each run.

Considering that the allocated time limit might stop
an execution of a task, the plots in Figure 5 ran with
this timing stopping condition up to their allocated time,
all jobs started, and produced useful output results. The
plots are drawn after all tasks have executed the allocated
runs. As the runs with dimension ten thousand were run-
ning the longest, to cap the runtimes on the cpu parti-
tion, the multiplier of 288 minutes per scale S was used
as shown in Figure 4 on line 8. All jobs have success-
fully reached target generations of 300 for the VLSGO
tasks, except 4 cancelled earlier by Slurm due to timeout
on node cn0514 (jobs 31746064 on S = 5, RNi = 6 at
G = 298; 31746065 on S = 3, RNi = 6 and RNi = 1
both at G = 289) and cn0570 (31746113, G = 269).

For each of the runs plotted, it is observed that the fit-
ness function optimised by the ROA is successfully im-
proving, hence, the ROA CI is performing its main func-
tionality of optimisation.

Further, using Universal Machine Learning Analy-
sis Utility (Umlaut) from GitHub https://github.
com/daphne-eu/umlaut, the resource usage is tra-
cked during execution. As an example, for configura-
tion D = 10.000, NP = 1000, the total runtime over
these independent runs is seen in Figure 6. Furthermore,
Figures 7 and 10 provide usage of memory and CPU
resources, respectively. The memory usage plot peeks
at approximately 105.87 MB for these runs, by initially
rising to roughly 89 MB and then staying almost all of
the time at that usage, slightly varying because of iter-
ative allocations. As memory was seen increasing dur-
ing the run, in meanwhile after experiments have already
been done in August using lates July code updates and by
the time of revision of this paper in September, also for
loops [17], the implementation of allocations has been
upgraded in the language implementation with newest

1 def eval_f(x: matrix<f64>) -> matrix<
↪→ f64> {

2 return ((sum(x * x, 0) - 10) ˆ 2
↪→) ˆ 0.125 + (sum(x * x, 0)
↪→ / 2 + sum(x)) / 10 + 0.5;

3 }

Figure 1: Fitness function f evaluation snippet in DaphneDSL.

385

1 git clone https://github.com
↪→ /daphne-eu/daphne.git

Figure 2: Cloning the DAPHNE main repository from daphne-
eu repository of daphne-eu at GitHub, from July 26, 2024.

1 [DAPHNE]..Successfully built Daphne://
↪→ daphne (took 4h 37min 624ms 452us
↪→ 620ns)
↪→[31.07.24
↪→ 15:22:43]

Figure 3: Output feedback after compiling the latest codes on
EuroHPC Vega using a single Slurm task.

software release (version 0.3) and additional regular up-
dates.

A plotting of run times over scaling level S for D is
seen in Figures 8 and 9, where runtime dash-dotted linear
fit of data points is seen increasing with S. For RNi = 1
(the first run) of D = 10.000 (smallest S) and RNi = 4
(typical, median run) of D = 100.000 (largest S), plots
for CPU load are drawn in Figure 10. CPU load is base-
lined at 100% (one thread) and the jitters with higer loads
are attributed to multi-threaded executions of DAPHNE
kernels with Basic Linear Algebra Subprograms (BLAS).
Deviations in running time among independent runs were
observed and could be studied further.

5 Conclusion
This paper presented a pipeline benchmarking with lat-
est July 2024 deployment of DAPHNE (Integrated Data
Analysis Pipelines for Large-Scale Data Management,
HPC, and Machine Learning) on EuroHPC Vega, running
ROA CI tasks with Slurm on VLSGO (Very Large Scale
Global Optimization). An example ROA benchmarking
pipeline scenario using HappyCat function was bench-
marked and VLSGO scaling results were discussed, to-
gether with resource usage as obtained through Umlaut.
All runs have successfully been running, optimizing fit-
ness, and their provided resource usage reported.

Future work still includes further deployment (e.g. to
additional hardware and improved scheduling of work-
load in distributed multi-node Slurm tasks), comparisons
of benchmarking results [11, 12], integrated benchmark-
ing, benchmarking using updated versions of DAPHNE
software, and extending the ROA scenario and library as
well as research in other use cases, especially from CI
and remote sensing, including underwater missions like
ocean glider path planning and text summarization.

References
[1] Publication Office of the European Union, “Fact sheet : Integrated

data analysis pipelines for large-scale data management, hpc, and
machine learning,” in CORDIS – EU research results, 2024, p.
https://cordis.europa.eu/project/id/957407.

[2] P. Damme, M. Birkenbach, C. Bitsakos, M. Boehm, P. Bonnet,
F. Ciorba, M. Dokter, P. Dowgiallo, A. Eleliemy, C. Faerber,

1 for S in {1..10}; do
2 for NP in 1000; do
3 D=${S}0000
4 echo D=$D NP=$NP
5 for RNi in {1..10}; do
6 echo -n .
7 { time srun --mpi=none \
8 --time $((288*$S)) --mem=${S}G \
9 ../daphneeu.sif \

10 ./run-daphne.sh roa.d \
11 D=$D NP=$NP RNi=$RNi \
12 > results-D-$D-NP-$NP-RNi-$RNi-

↪→ out.txt &
13 } 2> time-D-$D-NP-$NP-RNi-$RNi-

↪→ out.txt
14 done #RNi
15 done #NP
16 done #D
17
18 wait

Figure 4: Deploying ROA on EuroHPC Vega with Slurm, scal-
ing the optimized dimension sizes.

G. Goumas, D. Habich, N. Hedam, M. Hofer, W. Huang, K. In-
nerebner, V. Karakostas, R. Kern, T. Kosar, A. Krause, D. Krems,
A. Laber, W. Lehner, E. Mier, M. Paradies, B. Peischl, G. Po-
erwawinata, S. Psomadakis, T. Rabl, P. Ratuszniak, P. Silva,
N. Skuppin, A. Starzacher, B. Steinwender, I. Tolovski, P. Tözün,
W. Ulatowski, Y. Wang, I. Wrosz, A. Zamuda, C. Zhang, and
X. X. Zhu, “Daphne: An open and extensible system infrastruc-
ture for integrated data analysis pipelines,” in 12th Conference on
Innovative Data Systems Research, CIDR 2022, Chaminade, CA,
January 9-12, 2022.

[3] A. Vontzalidis, S. Psomadakis, C. Bitsakos, M. Dokter, K. In-
nerebner, P. Damme, M. Boehm, F. Ciorba, A. Eleliemy,
V. Karakostas, A. Zamuda, and D. Tsoumakos, “DAPHNE
Runtime: Harnessing Parallelism for Integrated Data Analysis
Pipelines,” in Euro-Par 2023: Parallel Processing Workshops, ser.
Lecture Notes in Computer Science, vol. 14352, D. Zeinalipour,
D. B. Heras, G. Pallis, H. Herodotou, D. Trihinas, D. Balouek,
P. Diehl, T. Cojean, K. Fürlinger, M. H. Kirkeby, M. Nardellli,
and P. D. Sanzo, Eds. Cham: Springer, 2024, pp. 242–246.

[4] T. Tomažič and A. Zamuda, “Digital Strategic Communication:
the Case of the 1st DAPHNE Symposium,” in Proceedings of 33rd
International Electrotechnical and Computer Science Conference,
2024, p. (in print).

[5] A. Zamuda, Operacijske raziskave logističnih, transportnih in
ekonomskih sistemov: zbrano gradivo. Univerza v Mariboru,
Fakulteta za elektrotehniko, računalništvo in informatiko, 2020.

[6] ——, “Business intelligence through computational intelligence
for data science: an overview of the breadth of real numerical
optimization solutions – through autonomous submarines, forest
modeling, power plant management, space probes, protein mod-
eling, radio signal coding to text summarization,” in lecture pre-
sented at SMART FUTURE Data Science and Business Intelli-
gence, UNI.MINDS, 17. november 2020, 2020.

[7] A. Zamuda and M. Dokter, “Deploying DAPHNE Computational
Intelligence on EuroHPC Vega for Benchmarking Randomised
Optimisation Algorithms,” in International Conference on Broad-
band Communications for Next Generation Networks and Multi-
media Applications (CoBCom), 2024, p. 8.

[8] B. Steinwender, V. Jancauskas, A. Laber, M. Birkenbach, B. Ein-
berger, D. Krems, and A. Zamuda, “Integrated Data Analysis
Pipelines for Large-Scale Data Management, HPC, and Machine
Learning : D8.3 Benchmarking Results all Use Case Studies,”

386

-12000
-10000

-8000
-6000
-4000
-2000

 0
 2000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(a) D = 10.000, NP = 1000

-16000
-14000
-12000
-10000

-8000
-6000
-4000
-2000

 0
 2000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(b) D = 20.000, NP = 1000

-20000

-15000

-10000

-5000

 0

 5000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(c) D = 30.000, NP = 1000

-25000

-20000

-15000

-10000

-5000

 0

 5000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(d) D = 40.000, NP = 1000

-25000

-20000

-15000

-10000

-5000

 0

 5000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(e) D = 50.000, NP = 1000

-25000

-20000

-15000

-10000

-5000

 0

 5000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(f) D = 60.000, NP = 1000

-25000
-20000
-15000
-10000

-5000
 0

 5000
 10000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(g) D = 70.000, NP = 1000

-30000
-25000
-20000
-15000
-10000

-5000
 0

 5000
 10000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(h) D = 80.000, NP = 1000

-30000
-25000
-20000
-15000
-10000

-5000
 0

 5000
 10000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(i) D = 90.000, NP = 1000

-35000
-30000
-25000
-20000
-15000
-10000

-5000
 0

 5000
 10000

 0 50 100 150 200 250 300

Run 1
Run 2
Run 3
Run 4
Run 5

Run 6
Run 7
Run 8
Run 9

Run 10

(j) D = 100.000, NP = 1000

Figure 5: Convergent optimisation runs (fitness on vertical axis, number of executed generations on horizontal axis) using DAPHNE
ROA on function HappyCat, for different independent seeds, with D from D = 10.000 (case (a)) upto D = 100.000 in case (j).

0 1000 2000 3000 4000 5000 6000 7000
Time taken in seconds

 "HPC time"
from

2024-08-03 10:48:23

 "HPC time"
from

2024-08-03 10:50:50

 "HPC time"
from

2024-08-03 10:51:10

 "HPC time"
from

2024-08-03 10:54:16

 "HPC time"
from

2024-08-03 10:55:51

 "HPC time"
from

2024-08-03 10:56:16

 "HPC time"
from

2024-08-03 10:57:09

 "HPC time"
from

2024-08-03 11:02:11

 "HPC time"
from

2024-08-03 11:05:39

 "HPC time"
from

2024-08-03 11:19:09

5770.01

5931.00

5929.37

6116.42

6211.01

6236.19

6265.27

6603.99

6823.02

7600.40
Metric: Time

Figure 6: Time duration for DAPHNE ROA on function Happy-
Cat, D = 10.000, NP = 1000, over 10 RNi configurations,
measured through an Umlaut pipeline.

KAI (KAI Kompetenzzentrum Automobil- und Industrieelek-
tronik GmbH), DLR (Deutsches Zentrum für Luft- und Raumfahrt
EV), IFAT (Infineon Technologies Austria AG), AVL (AVL List
GmbH), and UM (Univerza v Mariboru), Tech. Rep. Version 2.1,
2024.

[9] G. B. Fogel, “A History of the IEEE Computational Intelligence
Society,” in 2009 IEEE Conference on the History of Technical
Societies. IEEE, 2009, pp. 1–5.

[10] A. Zamuda, “Randomised Optimisation Algorithms in
DAPHNE,” in Austrian-Slovenian HPC Meeting 2024 –
ASHPC24, 2024, p. 33.

[11] ——, “Generative AI Using HPC in Text Summarization and
Energy Plants,” in Austrian-Slovenian HPC Meeting 2023–
ASHPC23, 2023, p. 5.

[12] ——, “Parallelization of benchmarking using HPC: text sum-
marization in natural language processing (NLP), glider pilot-
ing in deep-sea missions, and search algorithms in computational
intelligence (CI),” in Austrian-Slovenian HPC Meeting 2021 -
ASHPC21, 2021, p. 35.

[13] DAPHNE: An Open and Extensible System Infrastructure for
Integrated Data Analysis Pipelines, “DaphneDSL Language
Reference,” in GitHub repository daphne-eu/daphne, 26 July
2024. [Online]. Available: https://github.com/daphne-eu/daphne/
blob/main/doc/DaphneDSL/LanguageRef.md

[14] A. Zamuda, “Monitoring and operational data analytics from a
user perspective at first EuroCC HPC Vega supercomputer and
nation-wide in Slovenia,” in invited lecture at moda21 : Second
International Workshop on Monitoring and Operational Data An-
alytics, 2 July 2021, Strasbourg (France), 2021.

[15] MIZŠ, “Ministrstvo za izobraževanje, znanost in šport (Di-
rektorat za znanost in inovacije): HPC Vega kot temelj za
inovacijsko-raziskovalni projekt DAPHNE,” in Portal GOV.SI :
spletišče državne uprave s celovitimi informacijami o njenem

0h 0m 0.00s 0h 26m 4.65s 0h 51m 40.06s 1h 16m 48.42s 1h 41m 56.29s
Seconds elapsed since start of pipeline run

87.44

89.11

90.79

92.46

94.14

95.82

97.49

99.17

100.84

102.52

104.20

105.87

M
em

or
y

us
ag

e
in

 M
B

Metric: Memory usage

Figure 7: Memory usage profiles during the run execution of
DAPHNE ROA on function HappyCat, D = 10.000, NP =
1000, and 10 RNi configuration values.

delovanju in preprostim dostopom do storitev. Ljubljana: Urad
Vlade Republike Slovenije za komuniciranje. 5. 1. 2022,
2022, pp. https://www.gov.si/novice/2022–01–05–hpc–vega–kot–
temelj–za–inovacijsko–raziskovalni–projekt–daphne/.

[16] M. Divjak and A. Zamuda, “Experimental pipeline definition for
surface high-density electromyogram (HDEMG) processing,” in
Proceedings of 33rd International Electrotechnical and Computer
Science Conference, 2024, p. (in print).

[17] B. Bošković, J. Brest, and A. Zamuda, “Loops of the Domain-
specific Programming Language DaphneDSL,” in Proceedings of
33rd International Electrotechnical and Computer Science Con-
ference, 2024, p. (in print).

[18] M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör,
K. Innerebner, F. Klezin, S. Lindstaedt, A. Phani, B. Rath,
B. Reinwald, S. Siddiqi, and S. B. Wrede, “SystemDS: A Declar-
ative Machine Learning System for the End-to-End Data Science
Lifecycle,” in 10th Annual Conference on Innovative Data Sys-
tems Research, CIDR 2020, 2020.

[19] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of
the State-of-the-art,” IEEE Transactions on Evolutionary Compu-
tation, vol. 15, no. 1, pp. 4–31, 2011.

[20] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and
Q. Zhang, “Multiobjective evolutionary algorithms: A survey of
the state of the art,” Swarm and Evolutionary Computation, vol. 1,
no. 1, pp. 32–49, 2011.

[21] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimiza-
tion metaheuristics,” Information Sciences, vol. 237, pp. 82–117,
2013.

[22] A. Zamuda and J. Brest, “Self-adaptive control parameters’ ran-
domization frequency and propagations in differential evolution,”
Swarm and Evolutionary Computation, vol. 25, pp. 72–99, 2015.

387

0 20000 40000 60000 80000 100000
Time taken in seconds

 "HPC time ROA D=10000 NP=1000 RNi=4"
from

2024-08-03 10:56:16

 "HPC time ROA D=20000 NP=1000 RNi=2"
from

2024-08-03 12:59:54

 "HPC time ROA D=30000 NP=1000 RNi=7"
from

2024-08-03 15:11:47

 "HPC time ROA D=40000 NP=1000 RNi=5"
from

2024-08-03 17:23:23

 "HPC time ROA D=50000 NP=1000 RNi=10"
from

2024-08-03 19:46:52

 "HPC time ROA D=70000 NP=1000 RNi=5"
from

2024-08-03 22:22:57

 "HPC time ROA D=60000 NP=1000 RNi=8"
from

2024-08-03 22:53:07

 "HPC time ROA D=80000 NP=1000 RNi=6"
from

2024-08-04 03:46:32

 "HPC time ROA D=90000 NP=1000 RNi=5"
from

2024-08-04 06:34:54

 "HPC time ROA D=100000 NP=1000 RNi=8"
from

2024-08-04 12:29:47

6236.19

13638.10

21579.85

29462.71

38076.01

47448.61

49272.19

66865.54

76977.61

98269.75
Metric: Time

Figure 8: Runtime reported for DAPHNE ROA on function
HappyCat, NP = 1000, for some selected runs with differ-
ent D. As D increases, the runtimes are also increasing.

[23] K. Sörensen, “Metaheuristics—the metaphor exposed,” Interna-
tional Transactions in Operational Research, vol. 22, no. 1, pp.
3–18, 2015.

[24] S. Das, S. S. Mullick, and P. Suganthan, “Recent advances in dif-
ferential evolution – An updated survey,” Swarm and Evolution-
ary Computation, vol. 27, pp. 1–30, 2016.

[25] A. P. Piotrowski, “Review of differential evolution population
size,” Swarm and Evolutionary Computation, vol. 32, pp. 1–24,
2017.

[26] X. Liu, J. Sun, Q. Zhang, Z. Wang, and Z. Xu, “Learning to learn
evolutionary algorithm: A learnable differential evolution,” IEEE
Transactions on Emerging Topics in Computational Intelligence,
vol. 7, pp. 1605–1620, 2023.

[27] A. Zamuda and J. Brest, “Vectorized procedural models for ani-
mated trees reconstruction using differential evolution,” Informa-
tion Sciences, vol. 278, pp. 1–21, 2014.

[28] A. Glotić and A. Zamuda, “Short-term combined economic and
emission hydrothermal optimization by surrogate differential evo-
lution,” Applied Energy, vol. 141, pp. 42–56, 1 March 2015.

[29] R. P. Parouha and K. N. Das, “Dpd: An intelligent parallel hy-
brid algorithm for economic load dispatch problems with various
practical constraints,” Expert Systems with Applications, vol. 63,
pp. 295–309, 2016.

[30] A. Zamuda and J. D. H. Sosa, “Success history applied to expert
system for underwater glider path planning using differential evo-
lution,” Expert Systems with Applications, vol. 119, no. 1 April
2019, pp. 155–170, 2019.

[31] R. Storn and K. Price, “Differential Evolution – A Simple
and Efficient Heuristic for Global Optimization over Continuous
Spaces,” Journal of Global Optimization, vol. 11, pp. 341–359,
1997.

[32] A. Zamuda, “Function Evaluations Upto 1e+12 and Large Popula-
tion Sizes Assessed in Distance-based Success History Differen-
tial Evolution for 100-Digit Challenge and Numerical Optimiza-
tion Scenarios (DISH-chain1e+12): A competition entry for ”100-
Digit Challenge, and Four Other Numerical Optimization Compe-
titions” at The Genetic and Evolutionary Computation Conference
(GECCO) 2019,” in Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’19 Companion), July 13–17, 2019,
Prague, Czech Republic, 2019, pp. ACM, New York, NY, USA.

0.2 0.4 0.6 0.8 1
·105

0

0.5

1

·105

Dimension D [integer]

Run
tim

e[s
eco

nds
]

Runtime of ROA in DAPHNEdepending onproblem dimension size

ROA in DAPHNE

Figure 9: Runtime reported for DAPHNE ROA on function
HappyCat, depending on problem dimension size (D), NP =
1000, drawn as average and standard deviations.

0h 0m 0.00s 0h 26m 24.40s 0h 52m 8.29s 1h 17m 55.01s 1h 43m 30.90s
Time elapsed since start of pipeline run

12.5

48.3

109.0

169.7

230.5

291.2

351.9

412.6

473.4

534.1

594.8

655.6

CP
U

us
ag

e
in

 %

Metric: CPU usage

(a) D = 10.000, RNi = 1

0h 0m 0.00s 7h 52m 58.25s 15h 49m 46.77s 23h 35m 41.24s 31h 32m 43.44s
Time elapsed since start of pipeline run

17.3

47.9

113.1

178.3

243.5

308.7

374.0

439.2

504.4

569.6

634.8

700.0

CP
U

us
ag

e
in

 %

Metric: CPU usage

(b) D = 100.000, RNi = 5

Figure 10: CPU load during run execution using DAPHNE
ROA on function HappyCat NP = 1000, for case a) D =
10.000, RNi = 1 and D = 100.000, RNi = 5.

[33] ——, “Solving 100-digit challenge with score 100 by extended
running time and parallel benchmarking,” in SOR ’23 : proceed-
ings of the 17th International Symposium on Operational Re-
search in Slovenia : Bled, Slovenia, September 20-22, 2023. 1st
electronic version. Ljubljana: Slovenian Society Informatika -
Section for Operational Research, 2023, pp. 206–211.

[34] K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan, “The
100-Digit Challenge: Problem Definitions and Evaluation Crite-
ria for the 100-Digit Challenge Special Session and Competition
on Single Objective Numerical Optimization,” Vacaville, Califor-
nia, USA and School of EEE, Nanyang Technological University,
Singapore and School of Computer Information Systems, Jordan
University of Science and Technology, Jordan, Technical Report,
Nanyang Technological University, Singapore, November 2018,
2018.

[35] H.-G. Beyer and S. Finck, “HappyCat – A Simple Function Class
Where Well-Known Direct Search Algorithms Do Fail,” in In-
ternational conference on parallel problem solving from nature.
Springer, 2012, pp. 367–376.

