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Multicriteria optimization of surface
temperature sensors placement based on

LiDAR data
This paper presents a multicriteria optimization method
for placing surface temperature sensors based on LiDAR
data. A classified LiDAR point cloud is first transformed
into a 2.5D grid, enabling optimization of sensor
placement over the grid based on three proposed
criteria: inter-sensor distance, alignment with average
Sky View Factor (SVF), and sensitivity to Land Surface
Temperature (LST) variability. Moreover, experiments
were performed for an urban area using NSGA-II,
NSGA-III, and SPEA2 algorithms. NSGA-II provided the
best balance of convergence and solution diversity,
particularly for smaller sensor networks. Finally, the
experiments confirmed that the proposed method
presents a viable solution for optimal surface
temperature sensors placement in complex urban
environments.

1 Uvod
V zadnjem obdobju smo priča hitremu razvoju
mikrosenzorske tehnologije in senzorskih omrežij, ki
predstavljajo enega ključnih gradnikov sodobnih
pametnih mest [1]. Mikrosenzorji omogočajo
neprekinjeno spremljanje okoljskih parametrov z visoko
časovno in v primeru množične namestitve tudi
prostorsko ločljivostjo. Množično nameščanje v obliki
senzorskih omrežij omogočajo majhnost, nizka poraba
energije in podpora brezžične komunikacije
mikrosenzorjev [2].

Senzorska omrežja, sestavljena iz množice
prostorsko razporejenih mikrosenzorjev, tvorijo temelj
za razvoj digitalnih dvojčkov mest [3], kjer se z
integracijo senzorskih podatkov, geoinformacijskih
sistemov in okoljskih simulacij [4, 5] ustvarjajo digitalne
kopije mest, ki omogočajo boljše upravljanje z energijo,
mobilnostjo, okoljskimi viri ter odzivanje na podnebne
spremembe. V okviru digitalnih dvojčkov so podatki o
temperaturi površja (angl. Land Surface Temperature,
LST) ključnega pomena, saj omogočajo zaznavanje
urbanih toplotnih otokov, in posledično načrtovanje
ukrepov za zmanjševanje lokalnega segrevanja.

V zadnjih letih je povečana dostopnost LiDAR (angl.
Light Detection And Ranging) podatkov še dodatno

izboljšala možnosti za izboljšanje zmogljivosti
senzorskih omrežij, saj omogoča pridobivanje podrobnih
tridimenzionalnih informacij o površju, kar je ključno za
optimalno umeščanje senzorjev [6]. V primerjavi s
3D-podatki, pridobljenimi s satelitskimi posnetki, ima
LiDAR višjo ločljivost [7]. LiDAR podatki se običajno
zajemajo z zračnimi platformami, kot so brezpilotna
letala (droni) ali letala, ki razdaljo do objektov na
površju izračunajo na podlagi pretečenega časa od
oddaje do vrnitve odbitega laserskega pulza. Rezultat
tovrstnega skeniranja je oblak točk, ki ga uporabljamo v
tem delu kot osnovo za predstavitev okolice, v kateri
iščemo optimalno postavitev senzorjev (angl. Optimal
Sensor Placement, OSP), ki predstavlja eno ključnih
nalog pri zasnovi in uvedbi naprednih senzorskih
sistemov.

OSP vključuje strateško umeščanje senzorjev z
namenom maksimiranja njihove učinkovitosti pri
zbiranju podatkov, s čimer se zagotavlja celovita
pokritost in natančno spremljanje izbranega okolja ali
objekta [8, 9, 10]. Osrednji cilj OSP je doseči čim višjo
kakovost podatkov ob hkratni uporabi čim manjšega
števila senzorjev, kar omogoča optimizacijo delovanja
sistema in zmanjšanje stroškov [11]. Tradicionalno je
bila pri tem pogosto uporabljena enokriterijska
optimizacija, ki se osredotoča na en sam cilj [12].
Vendar pa kompleksna urbana okolja zahtevajo bolj
celovite pristope, ki upoštevajo tudi prostorske
značilnosti terena v obliki digitalnega modela terena
[13] ali podatkov LiDAR [14, 15]. Liu in Ma [13] sta
razvila metodologijo za ocenjevanje pokritosti
brezžičnih senzorskih omrežij na valovitih terenih z
namenom maksimiranja pričakovane pokritosti območja.
Oroza in soavtorji [14] so razvili Bayesovski pristop za
optimizacijo topologije brezžičnih senzorskih omrežij v
zahtevnem terenu predstavljenem s podatki LiDAR, s
ciljem maksimiranja verjetnosti uspešnega prenosa
podatkov.

Pogosto naletimo na kompleksnejše sisteme, kjer je
potrebno med seboj uravnotežiti več ciljev, kar izvajamo
z večkriterijsko optimizacijo. Namesto ene same
optimalne rešitve iščemo niz t.i. Pareto optimalnih
rešitev, kjer izboljšava enega kriterija lahko pomeni
poslabšanje drugega. Ta niz rešitev tvori Pareto fronto,
ki prikazuje najboljše možne kompromise med cilji
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[16, 17].
Domingo-Pérez in soavtorji [16] so uporabili

evolucijsko večkriterijsko optimizacijo za določanje
optimalne postavitve senzorjev za lokalizacijo na osnovi
razlik v razdaljah. Wang je s soavtorji [18] predstavil
metodo za večkriterijsko optimizacijo postavitve
senzorjev za mrežo merilnih postaj za padavine, pri
čemer so avtorji hkrati maksimirali doseg in
minimalizirali stroške nameščanja senzorjev. Yang in
Xia [17] sta predstavila pristop za robustno
večkriterijsko optimizacijo postavitve senzorjev z
upoštevanjem negotovosti struktur prek intervalne
analize in Pareto fronte.

Glavni prispevek članka je integracija podatkov
LiDAR in večkriterijske optimizacije za določitev
optimalne postavitve senzorjev temperature površja v
urbanih okoljih. Klasificiran oblak točk pretvorimo v
2.5D mrežo, ki zajema topografijo in rabo prostora, kar
omogoča natančno prostorsko analizo. V določenih
primerih lahko imamo pomanjkljive podatke LiDAR
(npr. zaradi pojava večkratne refleksije laserskih
žarkov), kar povzroča prazne celice, ki jih nato lahko
enostavneje zapolnimo z interpolacijsko metodo kot npr.
IDW (angl. Inverse Distance Weighting). 2.5D mreža
nam tudi omogoča določanje enake ločljivosti čez
celotni prostor, kjer lahko dosežemo kompromis med
hitrostjo (nižja ločljivost) in natančnostjo (višja
ločljivost). To je predvsem uporabno, kadar imamo na
vhodu zelo gost oblak točk LiDAR (npr. pod 1 m), kjer
bi izračuni neposredno nad točkami bili računsko
zahtevnejši. Na tej osnovi v naslednjem poglavju
definiramo tri optimizacijske kriterije: povprečno
minimalno razdaljo med senzorji, povprečno odstopanje
SVF glede na celotno območje ter standardni odklon
simulirane LST. Tak pristop omogoča iskanje
kompromisnih rešitev z uporabo optimizacijskih
algoritmov, kjer posamezne postavitve uravnotežijo
odstopanja med kriteriji.

Članek je razdeljen na štiri poglavja. V naslednjem
poglavju predstavimo metodologijo optimizacije
postavitve, nato pa opišemo rezultate testiranja
metodologije s tremi različnimi optimizacijskimi
algoritmi. V četrtem poglavju podamo zaključke in
predloge za prihodnje delo.

2 Metodologija
V okviru dane metode uporabimo podatke LiDAR, kjer
klasificiran 3D oblak točk [19] pretvorimo v
2.5-dimenzionalno mrežo istega obsega G, kjer za vsako
celico ci ∈ G določimo višino ci.z kot višino
maksimalne LiDAR točke v celici. Dana celica prav tako
prejme klasifikacijski razred ci.c od maksimalne točke.

Pred zagonom večkriterijske optimizacije najprej
definiramo omejitev optimizacije optimizacijskega
prostora, tako da se upošteva le T ∈ G, ki vsebuje celice
površij, kamor želimo namestiti N senzorjev S. Nato
definiramo naslednje optimizacijske kriterije, ki jih

želimo maksimizirati:
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kjer prvi kriterij mindist(S) predstavlja povprečno
minimalno evklidsko razdaljo dMIN

i od i-tega senzorja
do svojega najbližjega. S tem omogočimo, da so senzorji
tem bolj oddaljeni drug od drugega in strmimo k
uniformni porazdelitvi. Tako dosežemo večjo pokritost
celotnega področja T .

Drugi kriterij je SV F∆(S), ki predstavlja
povprečno razliko med faktorjem vidnega neba (angl.
Sky View Factor, SVF) na lokaciji senzorjev in
povprečnim SV F celotnega področja T . SVF je
definiran z brezdimenzionalno mero, ki kvantificira,
kolikšen del neba je viden iz dane celice. V primeru
SVF=1 je celotna polsfera neba vidna, v primeru SVF=0
pa imamo popolno zastrtost dane lokacije. SVF
izračunamo z uporabo algoritma metanja žarkov pred
zagonom optimizacije. SVF za vsako celico izračunamo
z metanjem žarkov v prostor polsfere 360◦ × 90◦ s
sferično ločljivostjo na celico hres × vres, pri čemer θ in
ϕ predstavljata azimutni in višinski kot. SVF je tako
definiran kot [15]:

SVF =
1

π

∫ 2π

0

∫ π
2

0

V (θ, ϕ) sinϕdϕ dθ, (4)

kjer V (θ, ϕ) predstavlja funkcijo vidljivosti v smeri
žarka. Tako z drugim kriterijem želimo postavitev
senzorjev zajeti čimbolj povprečno vidnost okolice
(lahko bi definirali kot kontekst vidljivosti) za dano
področje. Senzorji s povprečnim SVF-jem kot celotno
območje zagotavljajo reprezentativne meritve,
zmanjšujejo pristranskost pri modeliranju
mikroklimatskih pogojev v različnih urbanih
morfologijah ter sledijo mednarodnim smernicam
urbanega klimatološkega vzorčenja pri t.i. urbanih
kanjonih [20].

Tretji kriterij je definiran kot LST STD∆(S), ki
predstavlja povprečni standardni odklon simulirane
temperature površja σLST

i na lokaciji i − tega senzorja.
σLST
i izračunamo kot standardni odklon vrednosti

simuliranega LST za 4 ekstremne dneve v letu, to so
poletni in zimski solsticij ter pomladni in jesenski
ekvinokcij. Simulacija LST je področje izven danega
članka, temelji pa na avtorjevih predhodnih delih [4, 19].
V splošnem izračunamo LST, definiran kot Ts z
numeričnim reševanjem enačbe energijske bilance na
površju zemlje za dani časovni trenutek:

(1− α)I = ε(σT 4
s − L) + hc(Ts − Ta) + C, (5)
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(a) (b) (c) (d)

7,2            14,70                     1

Slika 1: Vhodni podatki: (a) 2.5D mreža G nad podatki LiDAR, (b) izračun SVF-ja, (c) označeno območje T , ter (c)
standardni odklon simuliranih LST-jev.

kjer I predstavlja prejeto sončno obsevanje, α albedo
(odbojnost) površja, ε emisivnost površja, L prejeto
dolgovalovno (termično) sevanje iz okolice, Ta

ambientalna temperatura zraka nad površjem, hc

konvekcijski koeficient toplote, ter C kondukcijski tok.
Kriterij omogoča robustnejšo usmerjanje parametrov
energijske bilance v simulaciji, saj je izračun za
temperaturno ekstremna površja najbolj zahtevnejši in
nagnjen k napakam. Prav tako dani kriterij omogoča
večjo občutljivost na merjenje potencialnih učinkov
naknadnih podnebnih in urbanističnih intervencij, kjer se
spremembe rabe tal, albeda ali senčenja najhitreje
odrazijo v površinski temperaturi.

Ker prvi kriterij zahteva maksimalno medsebojno
oddaljenost senzorjev (da minimiziramo prostorsko
redundanco), drugi zahteva, da imajo ti isti senzorji SVF
čim bližji povprečni vrednosti celotnega območja T (kar
senzorje potiska v morfološko tipične dele, pogosto med
seboj bliže), tretji pa jih usmerja na lokacije z največjimi
letnimi temperaturnimi nihanji (ki so navadno
prostorsko skoncentrirane in imajo ekstremne SVF-je),
vsaka izboljšava enega kriterija praviloma poslabša vsaj
enega od preostalih dveh; zato globalnega maksimuma,
ki bi hkrati optimiziral vse tri funkcije, nad realno
okolico ni, in je smiselno iskati celoten Pareto nabor
kompromisnih rešitev. V naslednjem poglavju
predstavimo nabor dobljenih Pareto rešitev.

3 Rezultati
Večkriterijsko optimizacijo postavitve senzorjev z
definiranimi kriteriji smo testirali nad podatki LiDAR
lokacije zgradb Fakultete za elektrotehniko,
računalništvo in informatiko, Univerza v Mariboru.
Vhodni podatki so prikazani na sliki 1, kjer smo najprej
zgradili 2.5D klasificirano mrežo (slika 1a) ter izračunali
SVF (slika 1b). Nato smo določili območje T (slika 1c)
in simulirali LST za 4 ekstremne dneve ter izračunali
standardni odklon izračunanih temperatur površij (slika
1d). Simulacija LST je zahtevala dodatne vhodne
podatke za dane dni, in sicer direktno in difuzno
horizontalno obsevanje kot tudi ambientalno
temperaturo zraka, kar smo pridobili iz bližnje
meteorološke postaje ARSO pri Vrbanskem platoju,
Maribor.

Za izvedbo optimizacije smo uporabili tri znane
algoritme, in sicer NSGA-II [21], NSGA-III [22] in
SPEA2 [23]. Pri vseh treh smo definirali število
generacij oz. iteracij na 5000, ter velikost populacije
enako 100, pri čemer je bilo število ovrednotenj
kriterijske funkcije enako 5000× 100 . Vse tri algoritme
smo 5-krat pognali in izračunali metriki povprečnega
volumna hiperkocke Pareto rešitev [23] in povprečno
razpršenost Pareto rešitev [23], za tri scenarije pri
različnih številih senzorjev (N = 5, N = 15 in
N = 30). Rezultati so prikazani v tabeli 1. Pred
izračunom obeh metrik smo normalizirali prvi kriterij z
maksimalno možno razdaljo dveh senzorjev na danem
območju. Drugi kriterij je že normaliziran, tretjega pa
smo normalizirali z min-max standardnega odklona LST.
Hipervolumen H meri, kolikšno prostornino v prostoru
rešitev zavzame unija dominiranih točk Pareto fronte.
Višji H pomeni, da fronta hkrati sega bližje idealnim
vrednostim vseh kriterijev in bolje zapolni kompromisni
prostor (v našem primeru so vsi trije normalizirani
kriteriji enaki 1). Razpršenost P opisuje enakomernost
razporeditve točk po Pareto fronti. Nižja vrednost
nakazuje, da so rešitve homogeno pokrile celotno fronto
brez “lukenj” ali koncentracije in tako nudijo uporabniku
neprekinjen nabor kompromisov. Bolj nazorni prikaz
vseh Pareto front je viden na sliki 2. Primer postavitve
senzorjev za eno izbrano rešitev na Pareto fronti
algoritma NSGA-II je prikazan na sliki 3.

Tabela 1: Rezultat izračunanega hipervolumna Pareto
prostora H in razpršenost P Pareto rešitev S pri treh
optimizacijskih algoritmih za tri scenarije postavitev
senzorjev.

N Algoritem Hmin Hmax H Pmin Pmax P

5
NSGA-II 0.445 0.822 0.609 0.638 0.791 0.705
NSGA-III 0.409 0.718 0.585 0.647 0.725 0.702
SPEA2 0.463 0.597 0.551 1.016 1.178 1.083

15
NSGA-II 0.504 0.619 0.551 0.581 0.690 0.627
NSGA-III 0.490 0.592 0.553 0.727 0.870 0.779
SPEA2 0.435 0.602 0.540 0.714 0.906 0.801

30
NSGA-II 0.412 0.484 0.442 0.576 0.668 0.609
NSGA-III 0.379 0.532 0.443 0.607 0.885 0.732
SPEA2 0.354 0.528 0.450 0.563 0.728 0.641

Rezultati kažejo, da je pri majhnem številu senzorjev
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N=5 N=15 N=30

Slika 2: Grafični prikaz Pareto front za vse tri izbrane algoritme pri različnih scenarijih števila senzorjev.

(a) (b) (c)

N=5 N=15 N=30

Slika 3: Vizualizacija postavitve senzorjev pri eni izmed mnogih rešitev na Pareto fronti pridobljeni z algoritmom
NSGA-II.

(N = 5) NSGA-II dosegel najvišji povprečni
hipervolumen (H = 0, 609) in hkrati zelo blizu najnižje
povprečne razpršenosti (P = 0, 705), kar pomeni
najboljšo kombinacijo konvergence in enakomerne
pokritosti fronte. Pri tem NSGA-III sicer dosega skoraj
enak hipervolumen, a z nekoliko boljšo razpršenostjo,
medtem ko je SPEA2 zaradi najvišjih vrednosti P v
povprečju najslabši. Pri srednjem scenariju (N = 15)
razlike med algoritmi v H skoraj izginejo, vendar
NSGA-II dosega najnižji P . Pri največ senzorskih
lokacijah (N = 30) NSGA-III doseže najvišji
Hmax = 0, 532 in s tem nakazuje boljšo zmožnost
iskanja skrajnih kompromisov, vendar NSGA-II in
SPEA2 ponujata bolj homogeno porazdelitev
(P = 0, 609 in 0, 641 proti 0, 732). Skupno torej
NSGA-II izstopa kot najbolj uravnovešena izbira pri
manjših in srednjih senzorskih omrežjih, medtem ko
NSGA-III pri večji populaciji senzorjev bolje razširi
fronto v smeri optimalnega hipervolumna.

4 Zaključek
Eksperimenti kažejo, da je algoritem NSGA-II pri
manjših in srednjih senzorskih omrežjih (N = 5 in
N = 15) dosegel hkrati najvišji povprečni hipervolumen
Pareto prostora in blizu najnižje povprečne razpršenosti.
S tem je zagotovil najbolj uravnoteženo kompromisno

fronto med tremi nasprotujočimi si kriteriji: prostorsko
razpršenostjo senzorjev, reprezentativnostjo SVF in
občutljivostjo na temperaturna nihanja LST. Pri večjem
številu senzorjev (N = 30) se je algoritem NSGA-III
izkazal z nekoliko boljšim maksimalnim
hipervolumnom, vendar je NSGA-II tudi tam zagotavljal
bolj homogeno porazdelitev rešitev, kar potrjuje njegovo
splošno robustnost.

Predstavljena metoda ima tudi več omejitev.
Ločljivost in klasifikacijska točnost vhodnih podatkov
LiDAR neposredno vplivata na natančnost 2.5D mreže
in posledično na izračun SVF. Prav tako simulirane
vrednosti LST temeljijo na energijskem modelu, ki
vključuje številne parametre (albedo, emisivnost, itd.),
pri čemer netočnosti ali manjkajoči vhodni podatki
lahko povzročijo pristranskost v tretjem kriteriju.

V prihodnje bomo preizkusili še druge večkriterijske
evolucijske algoritme. Razviti želimo tudi sistem, ki bo
po namestitvi senzorjev samodejno usmerjal energijski
model simulacije na podlagi realnih meritev in tako
iterativno izboljšal simuliranje LST. Dodatno bomo
raziskali uvedbo ekonomskih in logističnih kriterijev
(strošek montaže, dostopnost lokacij) ter testirali
prenosljivost metode na večje geografsko področje.
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Zahvala
Raziskovalno delo je bilo sofinancirano s strani Javne
agencije za znanstvenoraziskovalno in inovacijsko
dejavnost Republike Slovenije, v okviru temeljnega
projekta št. J7-50095 in raziskovalnega programa št.
P2-0041. Za podatke LiDAR in meteorološke meritve se
zahvaljujemo Agenciji Republike Slovenije za okolje.
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