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Multicriteria optimization of surface
temperature sensors placement based on
LiDAR data

This paper presents a multicriteria optimization method
for placing surface temperature sensors based on LIDAR
data. A classified LiDAR point cloud is first transformed
into a 2.5D grid, enabling optimization of sensor
placement over the grid based on three proposed
criteria: inter-sensor distance, alignment with average
Sky View Factor (SVF), and sensitivity to Land Surface
Temperature (LST) variability. Moreover, experiments
were performed for an urban area using NSGA-II,
NSGA-III, and SPEA?2 algorithms. NSGA-II provided the
best balance of convergence and solution diversity,
particularly for smaller sensor networks. Finally, the
experiments confirmed that the proposed method
presents a viable solution for optimal surface
temperature sensors placement in complex urban
environments.

1 Uvod

V zadnjem obdobju smo pria hitremu razvoju
mikrosenzorske tehnologije in senzorskih omreZij, ki
predstavljajo enega klju¢nih gradnikov sodobnih
pametnih mest [1]. Mikrosenzorji omogocajo
neprekinjeno spremljanje okoljskih parametrov z visoko
casovno in Vv primeru mnoZine namestitve tudi
prostorsko locljivostjo. MnoZi¢no names$canje v obliki
senzorskih omreZij omogocajo majhnost, nizka poraba
energije in  podpora  brezZine  komunikacije
mikrosenzorjev [2].

Senzorska omreZja, sestavljena iz mnoZice
prostorsko razporejenih mikrosenzorjev, tvorijo temelj
za razvoj digitalnih dvojckov mest [3], kjer se z
integracijo senzorskih podatkov, geoinformacijskih
sistemov in okoljskih simulacij [4, 5] ustvarjajo digitalne
kopije mest, ki omogocajo boljse upravljanje z energijo,
mobilnostjo, okoljskimi viri ter odzivanje na podnebne
spremembe. V okviru digitalnih dvoj¢kov so podatki o
temperaturi povrSja (angl. Land Surface Temperature,
LST) kljuCnega pomena, saj omogocajo zaznavanje
urbanih toplotnih otokov, in posledicno nacrtovanje
ukrepov za zmanjSevanje lokalnega segrevanja.

V zadnjih letih je povecana dostopnost LiDAR (angl.
Light Detection And Ranging) podatkov Se dodatno
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izboljSala moZnosti za izboljSanje  zmogljivosti
senzorskih omreZij, saj omogoca pridobivanje podrobnih
tridimenzionalnih informacij o povrsju, kar je klju¢no za
optimalno umesCanje senzorjev [6]. V primerjavi s
3D-podatki, pridobljenimi s satelitskimi posnetki, ima
LiDAR visjo locljivost [7]. LiDAR podatki se obicajno
zajemajo z zracnimi platformami, kot so brezpilotna
letala (droni) ali letala, ki razdaljo do objektov na
povr§ju izraCunajo na podlagi preteCenega Casa od
oddaje do vrnitve odbitega laserskega pulza. Rezultat
tovrstnega skeniranja je oblak tock, ki ga uporabljamo v
tem delu kot osnovo za predstavitev okolice, v kateri
iS¢emo optimalno postavitev senzorjev (angl. Optimal
Sensor Placement, OSP), ki predstavlja eno kljucnih
nalog pri zasnovi in uvedbi naprednih senzorskih
sistemov.

OSP vkljuCuje strateSko umeSCanje senzorjev z
namenom maksimiranja njihove ucinkovitosti pri
zbiranju podatkov, s Cimer se zagotavlja celovita
pokritost in natancno spremljanje izbranega okolja ali
objekta [8, 9, 10]. Osrednji cilj OSP je doseci ¢im vi§jo
kakovost podatkov ob hkratni uporabi ¢im manjSega
Stevila senzorjev, kar omogoca optimizacijo delovanja
sistema in zmanjSanje stroskov [11]. Tradicionalno je
bila pri tem pogosto uporabljena enokriterijska
optimizacija, ki se osredotoa na en sam cilj [12].
Vendar pa kompleksna urbana okolja zahtevajo bolj
celovite pristope, ki upoStevajo tudi prostorske
znacilnosti terena v obliki digitalnega modela terena
[13] ali podatkov LiDAR [14, 15]. Liu in Ma [13] sta
razvila metodologijo za ocenjevanje  pokritosti
brezzi¢nih senzorskih omreZij na valovitih terenih z
namenom maksimiranja pricakovane pokritosti obmocja.
Oroza in soavtorji [14] so razvili Bayesovski pristop za
optimizacijo topologije brezzi¢nih senzorskih omrezij v
zahtevnem terenu predstavljenem s podatki LiDAR, s
ciliem maksimiranja verjetnosti uspeSnega prenosa
podatkov.

Pogosto naletimo na kompleksnejSe sisteme, kjer je
potrebno med seboj uravnoteZiti vec ciljev, kar izvajamo
z veckriterijsko optimizacijo. =~ Namesto ene same
optimalne reSitve iS¢emo niz t.i. Pareto optimalnih
reSitev, kjer izboljSava enega kriterija lahko pomeni
poslabSanje drugega. Ta niz reSitev tvori Pareto fronto,
ki prikazuje najboljSe moZne kompromise med cilji



[16, 17].

Domingo-Pérez in soavtorji [16] so uporabili
evolucijsko veckriterijsko optimizacijo za doloCanje
optimalne postavitve senzorjev za lokalizacijo na osnovi
razlik v razdaljah. Wang je s soavtorji [18] predstavil
metodo za veckriterijsko optimizacijo postavitve
senzorjev za mreZo merilnih postaj za padavine, pri
¢emer so avtorji hkrati maksimirali doseg in
minimalizirali stroske names$Canja senzorjev. Yang in
Xia [17] sta predstavila pristop za robustno
vecCkriterijsko optimizacijo postavitve senzorjev z
uposStevanjem negotovosti struktur prek intervalne
analize in Pareto fronte.

Glavni prispevek Clanka je integracija podatkov
LiDAR in veckriterijske optimizacije za dolocitev
optimalne postavitve senzorjev temperature povrsja v
urbanih okoljih. Klasificiran oblak toc¢k pretvorimo v
2.5D mreZo, ki zajema topografijo in rabo prostora, kar
omogoca natancno prostorsko analizo. V dolo¢enih
primerih lahko imamo pomanjkljive podatke LiDAR
(npr. zaradi pojava veCkratne refleksije laserskih
zarkov), kar povzroCa prazne celice, ki jih nato lahko
enostavneje zapolnimo z interpolacijsko metodo kot npr.
IDW (angl. Inverse Distance Weighting). 2.5D mreZa
nam tudi omogoca doloCanje enake locCljivosti Cez
celotni prostor, kjer lahko doseZemo kompromis med
hitrostjo (niZja locljivost) in natancnostjo (viSja
lo¢ljivost). To je predvsem uporabno, kadar imamo na
vhodu zelo gost oblak to¢k LiDAR (npr. pod 1 m), kjer
bi izracuni neposredno nad tockami bili racunsko
zahtevnejSi. Na tej osnovi v naslednjem poglavju
definiramo tri optimizacijske kriterije:  povprecno
minimalno razdaljo med senzorji, povprecno odstopanje
SVF glede na celotno obmocje ter standardni odklon
simulirane LST. Tak pristop omogoca iskanje
kompromisnih reSitev z uporabo optimizacijskih
algoritmov, kjer posamezne postavitve uravnotezijo
odstopanja med kriteriji.

Clanek je razdeljen na 3tiri poglavja. V naslednjem
poglavju  predstavimo metodologijo  optimizacije
postavitve, nato pa opiSemo rezultate testiranja
metodologije s tremi razliCnimi optimizacijskimi
algoritmi. 'V Cetrtem poglavju podamo zakljucke in
predloge za prihodnje delo.

2 Metodologija

V okviru dane metode uporabimo podatke LiDAR, kjer
klasificiran 3D oblak tock [19] pretvorimo Vv
2.5-dimenzionalno mreZo istega obsega G, kjer za vsako
celico ¢; € G dolo¢imo viSino ¢;.z kot viSino
maksimalne LiDAR tocke v celici. Dana celica prav tako
prejme klasifikacijski razred c;.c od maksimalne tocke.
Pred zagonom veckriterijske optimizacije najprej
definiramo omejitev optimizacije optimizacijskega
prostora, tako da se uposteva le 7' € G, ki vsebuje celice
povrsij, kamor Zelimo namestiti N senzorjev S. Nato
definiramo naslednje optimizacijske kriterije, ki jih
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zelimo maksimizirati:

N gMIN
mindist(S) = lN , (D
N SVF,
SVFA(S) =1— ZTDSVF . @
N SLST
LST_STDA(S) =Y Zt—
ST STDA(S) Z T 3)

kjer prvi kriterij mindist(S) predstavlja povpre¢no
minimalno evklidsko razdaljo dM’™ od i-tega senzorja
do svojega najbliZjega. S tem omogocimo, da so senzorji
tem bolj oddaljeni drug od drugega in strmimo k
uniformni porazdelitvi. Tako doseZemo vecjo pokritost
celotnega podrocja T'.

Drugi kriterij je SVFA(S), ki predstavlja
povprecno razliko med faktorjem vidnega neba (angl.
Sky View Factor, SVF) na lokaciji senzorjev in
povpre¢nim SV F celotnega podrogja T.  SVF je
definiran z brezdimenzionalno mero, ki kvantificira,
kolikSen del neba je viden iz dane celice. V primeru
SVF=1 je celotna polsfera neba vidna, v primeru SVF=0
pa imamo popolno zastrtost dane lokacije. SVF
izraCunamo z uporabo algoritma metanja Zarkov pred
zagonom optimizacije. SVF za vsako celico izracunamo
z metanjem Zarkov v prostor polsfere 360° x 90° s
sferi¢no locljivostjo na celico hyes X Vs, pri Cemer 6 in
¢ predstavljata azimutni in viSinski kot. SVF je tako
definiran kot [15]:

27 5
SVF— 1 / / V(0,0)singdpds, (@)
T Jo 0

kjer V (6, ¢) predstavlja funkcijo vidljivosti v smeri
zarka. Tako z drugim kriterijem Zelimo postavitev
senzorjev zajeti Cimbolj povprecno vidnost okolice
(lahko bi definirali kot kontekst vidljivosti) za dano
podrocje. Senzorji s povpre¢nim SVF-jem kot celotno
obmodje  zagotavljajo  reprezentativne  meritve,
zmanjsujejo pristranskost pri modeliranju
mikroklimatskih ~ pogojev v  razlicnih  urbanih
morfologijah ter sledijo mednarodnim smernicam
urbanega klimatoloSkega vzorCenja pri t.i. urbanih
kanjonih [20].

Tretji kriterij je definiran kot LST _STDA(S), ki
predstavlja povprec¢ni standardni odklon simulirane
temperature povrsja o757 na lokaciji i — tega senzorja.
oFST izratunamo kot standardni odklon vrednosti
simuliranega LST za 4 ekstremne dneve v letu, to so
poletni in zimski solsticij ter pomladni in jesenski
ekvinokcij. Simulacija LST je podroc¢je izven danega
¢lanka, temelji pa na avtorjevih predhodnih delih [4, 19].
V splosnem izraCunamo LST, definiran kot T z
numeriénim reSevanjem enacbe energijske bilance na
povrsju zemlje za dani Casovni trenutek:

(1—a) =e(oT: = L) +h(Ts —T,)+C, (5



(@)

Slika 1: Vhodni podatki: (a) 2.5D mreza G nad podatki LiDAR, (b) izratun SVF-ja, (c) oznaceno obmocje T, ter (c)

standardni odklon simuliranih LST-jev.

kjer I predstavlja prejeto soncno obsevanje, « albedo
(odbojnost) povrSja, € emisivnost povrSja, L prejeto
dolgovalovno (termi¢no) sevanje iz okolice, T
ambientalna temperatura zraka nad povrSjem, h,
konvekcijski koeficient toplote, ter C' kondukcijski tok.
Kriterij omogoca robustnejSo usmerjanje parametrov
energijske bilance v simulaciji, saj je izracun za
temperaturno ekstremna povrSja najbolj zahtevnejsi in
nagnjen k napakam. Prav tako dani kriterij omogoca
veCjo obcutljivost na merjenje potencialnih ucinkov
naknadnih podnebnih in urbanisti¢nih intervencij, kjer se
spremembe rabe tal, albeda ali senCenja najhitreje
odrazijo v povrS§inski temperaturi.

Ker prvi kriterij zahteva maksimalno medsebojno
oddaljenost senzorjev (da minimiziramo prostorsko
redundanco), drugi zahteva, da imajo ti isti senzorji SVF
¢im bliZji povprecni vrednosti celotnega obmocja 1" (kar
senzorje potiska v morfolosko tipi¢ne dele, pogosto med
seboj bliZe), tretji pa jih usmerja na lokacije z najvecjimi
letnimi temperaturnimi nihanji (ki so navadno
prostorsko skoncentrirane in imajo ekstremne SVF-je),
vsaka izboljSava enega kriterija praviloma poslabsa vsaj
enega od preostalih dveh; zato globalnega maksimuma,
ki bi hkrati optimiziral vse tri funkcije, nad realno
okolico ni, in je smiselno iskati celoten Pareto nabor
kompromisnih reSitev. V naslednjem poglavju
predstavimo nabor dobljenih Pareto reSitev.

3 Rezultati

Veckriterijsko optimizacijo postavitve senzorjev z
definiranimi kriteriji smo testirali nad podatki LiDAR
lokacije  zgradb  Fakultete za  elektrotehniko,
racunalniStvo in informatiko, Univerza v Mariboru.
Vhodni podatki so prikazani na sliki 1, kjer smo najprej
zgradili 2.5D klasificirano mreZo (slika 1a) ter izracunali
SVF (slika 1b). Nato smo dolocili obmocje 1" (slika 1c)
in simulirali LST za 4 ekstremne dneve ter izraCunali
standardni odklon izracunanih temperatur povrsij (slika
1d). Simulacija LST je zahtevala dodatne vhodne
podatke za dane dni, in sicer direktno in difuzno
horizontalno  obsevanje kot tudi  ambientalno
temperaturo zraka, kar smo pridobili iz bliZnje
meteoroloske postaje ARSO pri Vrbanskem platoju,
Maribor.
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Za izvedbo optimizacije smo uporabili tri znane
algoritme, in sicer NSGA-II [21], NSGA-III [22] in
SPEA2 [23]. Pri vseh treh smo definirali Stevilo
generacij oz. iteracij na 5000, ter velikost populacije
enako 100, pri cemer je bilo Stevilo ovrednotenj
kriterijske funkcije enako 5000 x 100 . Vse tri algoritme
smo 5-krat pognali in izraCunali metriki povprec¢nega
volumna hiperkocke Pareto reSitev [23] in povprecno
razprSenost Pareto reSitev [23], za tri scenarije pri
razliénih Stevilih senzorjev (N = 5, N = 15 in
N = 30). Rezultati so prikazani v tabeli 1. Pred
izra¢unom obeh metrik smo normalizirali prvi kriterij z
maksimalno mozno razdaljo dveh senzorjev na danem
obmocju. Drugi kriterij je Ze normaliziran, tretjega pa
smo normalizirali z min-max standardnega odklona LST.
Hipervolumen H meri, kolik$no prostornino v prostoru
reSitev zavzame unija dominiranih tock Pareto fronte.
Visji H pomeni, da fronta hkrati sega blizje idealnim
vrednostim vseh kriterijev in bolje zapolni kompromisni
prostor (v nasem primeru so vsi trije normalizirani
kriteriji enaki 1). RazprSenost P opisuje enakomernost
razporeditve tock po Pareto fronti. Nizja vrednost
nakazuje, da so reSitve homogeno pokrile celotno fronto
brez “lukenj” ali koncentracije in tako nudijo uporabniku
neprekinjen nabor kompromisov. Bolj nazorni prikaz
vseh Pareto front je viden na sliki 2. Primer postavitve
senzorjev za eno izbrano reSitev na Pareto fronti
algoritma NSGA-II je prikazan na sliki 3.

Tabela 1: Rezultat izraCunanega hipervolumna Pareto
prostora H in razprSenost P Pareto reSitev S pri treh
optimizacijskih algoritmih za tri scenarije postavitev
senzorjev.

N Algoritem  Hpin Hmax H Proin Pmax P
NSGA-II  0.445 0.822 0.609 0.638 0.791 0.705
5 NSGA-III 0409 0.718 0.585 0.647 0.725 0.702
SPEA2 0.463 0.597 0.551 1.016 1.178 1.083
NSGA-II  0.504 0.619 0.551 0.581 0.690 0.627
15 NSGA-III 0490 0.592 0.553 0.727 0.870 0.779
SPEA2 0.435 0.602 0.540 0.714 0.906 0.801
NSGA-II  0.412 0.484 0.442 0.576 0.668 0.609
30 NSGA-III  0.379 0.532 0.443 0.607 0.885 0.732
SPEA2 0.354 0.528 0.450 0.563 0.728 0.641

Rezultati kazejo, da je pri majhnem Stevilu senzorjev
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Slika 2: Grafi¢ni prikaz Pareto front za vse tri izbrane algoritme pri razli¢nih scenarijih Stevila senzorjev.

N=5 N=15

(a)

N=30

Slika 3: Vizualizacija postavitve senzorjev pri eni izmed mnogih reSitev na Pareto fronti pridobljeni z algoritmom

NSGA-IIL

(N = 5) NSGA-II dosegel najvi§ji povprecni
hipervolumen (H = 0, 609) in hkrati zelo blizu najniZje
povpreéne razprienosti (P = 0,705), kar pomeni
najboljSo kombinacijo konvergence in enakomerne
pokritosti fronte. Pri tem NSGA-III sicer dosega skoraj
enak hipervolumen, a z nekoliko boljSo razprSenostjo,
povprecju najslabsi. Pri srednjem scenariju (N = 15)
razlike med algoritmi v H skoraj izginejo, vendar
NSGA-II dosega najnizji P. Pri najve¢ senzorskih
lokacijah (N = 30) NSGA-III doseZe najvisji
Huax = 0,532 in s tem nakazuje boljSo zmoZnost
iskanja skrajnih kompromisov, vendar NSGA-II in
SPEA2 ponujata bolj homogeno porazdelitev
(P = 0,609 in 0,641 proti 0,732). Skupno torej
NSGA-II izstopa kot najbolj uravnoveSena izbira pri
manjSih in srednjih senzorskih omreZjih, medtem ko
NSGA-IIT pri veéji populaciji senzorjev bolje razSiri
fronto v smeri optimalnega hipervolumna.

4 Zakljucek

Eksperimenti kaZejo, da je algoritem NSGA-II pri
manjSih in srednjih senzorskih omrezjih (N = 5 in

v

Pareto prostora in blizu najniZje povprecne razprSenosti.
S tem je zagotovil najbolj uravnoteZeno kompromisno
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fronto med tremi nasprotujo¢imi si kriteriji: prostorsko
razprSenostjo senzorjev, reprezentativnostjo SVF in
obcutljivostjo na temperaturna nihanja LST. Pri vecjem
Stevilu senzorjev (N = 30) se je algoritem NSGA-III
izkazal z nekoliko boljsim maksimalnim
hipervolumnom, vendar je NSGA-II tudi tam zagotavljal
bolj homogeno porazdelitev reSitev, kar potrjuje njegovo
sploSno robustnost.

Predstavljena metoda ima tudi ve¢ omejitev.
Locljivost in klasifikacijska tocnost vhodnih podatkov
LiDAR neposredno vplivata na natan¢nost 2.5D mreZe
in posledicno na izra¢un SVF. Prav tako simulirane
vrednosti LST temeljijo na energijskem modelu, ki
vkljucuje Stevilne parametre (albedo, emisivnost, itd.),
pri Cemer netoCnosti ali manjkajo¢i vhodni podatki
lahko povzrocijo pristranskost v tretjem kriteriju.

V prihodnje bomo preizkusili Se druge veckriterijske
evolucijske algoritme. Razviti Zelimo tudi sistem, ki bo
po namestitvi senzorjev samodejno usmerjal energijski
model simulacije na podlagi realnih meritev in tako
iterativno izboljSal simuliranje LST. Dodatno bomo
raziskali uvedbo ekonomskih in logisti¢nih kriterijev
(stroSek montaZe, dostopnost lokacij) ter testirali
prenosljivost metode na vecje geografsko podrocje.
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