
ERK'2025, Portorož, 316-319 316

Vpliv delitve latentnega prostora na učenje generativnih
nasprotniških mrež na vektorskih podatkih

Luka Lukač, Niko Lukač, Damjan Strnad
Univerza v Mariboru

Fakulteta za elektrotehniko, računalništvo in informatiko
E-pošta: luka.lukac@um.si

Latent space partitioning influence on
generative adversarial network training for

vector data
In the paper, the effects of random and semi-regulated
latent space sampling on the training of a conditional
generative adversial network for the generation of writ-
ten characters are compared. The semi-regulated sam-
pling of latent vectors is achieved by partitioning the la-
tent space according to randomly placed class centroids.
The potential advantage of such approach is improved
training convergence in distributed environments where
multiple models could share the latent space partition-
ing. However, it is shown that the completely random
sampling is actually the better choice, because the semi-
regulated sampling cripples the efficiency of the genera-
tive adversial network training both in terms of realistic
character generation as well as their diversity.

1 Uvod
Generativne nasprotniške mreže (angl. generative adver-
sarial network, krajše GAN) so priljubljena metoda stroj-
nega učenja za generiranje podatkov s podobnimi značil-
nostmi, kot jih imajo podatki v učni množici [1]. GAN
sestoji iz dveh modelov nevronskih mrež: iz generatorja,
ki iz latentnega vektorja tvori vzorec, in iz diskrimina-
torja, ki oceni kakovost generiranega vzorca. Pri učenju
GAN-a se izmenjujeta diskriminator in generator, pri čemer
je cilj generatorja generirati čim bolj realistične vzorce in
s tem pretentati diskriminator, da le-ta ne zna razlikovati
med realnimi in generiranimi vzorci. Delovanje GAN-a
shematsko prikazuje slika 1.

Diskriminator

Lažen vzorec
GeneratorNaključni

šum

Realni vzorec

Podatkovna
zbirka Lažen

Realen

Slika 1: Shema delovanja GAN-a.

Umetne vzorce generator generira iz naključnih vek-
torjev, vzorčenih iz latentnega prostora. Navadno se v

ta namen vektorje znotraj latentnega prostora vzorči po
Gaussovi porazdelitvi [2, 3]. Tovrstno vzorčenje je sicer
enostavno za implementacijo, vendar lahko v določenih
primerih povzroči nestabilnost in divergenco učenja [4].
Poznamo tudi vzorčenje latentnih vektorjev z delitvijo la-
tentnega prostora na podprostore, iz katerih nato v fazi
učenja vzorčimo latentne vektorje za posamezne vzorce
[5]. V tem članku bomo primerjali efekte naključnega
vzorčenja latentnih vektorjev in vzorčenja z delitvijo la-
tentnega prostora. Ideja za predlagano metodo vzorčenja
na podlagi delitve latentnega prostora je zagotoviti večjo
stabilnost učenja in s tem izboljšati konvergenco ter učin-
kovitost modelov z isto latentno delitvijo v porazdelje-
nih okoljih. Nekatere sorodne metode [4, 6, 7, 8] se si-
cer ukvarjajo s problemom učinkovitega vzorčenja laten-
tnega prostora, a nobena ne operira z vektorskimi po-
datki.

Nadaljevanje članka sestoji iz poglavja 2, v katerem
opišemo delitev latentnega prostora in izbiranje latentnih
vektorjev v razdeljenem prostoru, poglavja 3, kjer pred-
stavimo rezultate in primerjamo delovanje GAN-a brez
in z delitvijo latentnega prostora, in poglavja 4, v kate-
rem strnemo rezultate.

2 Vzorčenje latentnih vektorjev z delitvijo
latentnega prostora

Pred začetkom učenja GAN-a metoda za vsak razred ci
v učni množici z Gaussovim vzorčenjem ustvari karak-
teristični vektor zci ∈ Z v d-dimenzionalnem latentnem
prostoru. Pri generiranju vzorcev z generatorjem imamo
dve možnosti vzorčenja latentnih vektorjev z:

1. Za vsak vzorec razreda ci, ki ga generiramo, kot la-
tentni vektor z vzamemo njegov pripadajoči karak-
teristični vektor zci in vanj vnesemo Gaussov šum.

2. Naključno vzorčimo latentni prostor po Gaussovi
porazdelitvi, dokler evklidska razdalja med doblje-
nim latentnim vektorjem z in karakterističnim vek-
torjem zci razreda vzorca ci, ki ga želimo generi-
rati, ni najmanjša med razdaljami do posameznih
karakterističnih vektorjev v Z.

Prva možnost omogoča najstabilnejše učenje, saj za
posamezen razred vedno izberemo vektor blizu zci , ven-
dar je posledično raznolikost med generiranimi vzorci is-



317

tega razreda majhna. Ta pojav pri GAN-ih pogosto ime-
nujemo padec modusa (angl. mode collapse) [9]. Ideja
za delitvijo prostora je, da podobne latentne predstavitve
določajo podobne, a še vedno dovolj raznolike generirane
vzorce.

Izbiranje latentnih vektorjev z delitvijo latentnega pro-
stora z našo implementacijo je prikazano v psevdokodu
1. Za vzorec, ki ga generiramo, najprej odčitamo pripa-
dajoč karakteristični latentni vektor zci iz sekljalne raz-
predelnice (vrstica 6). Znotraj celotnega latentnega pro-
stora vzorčimo začetni latentni vektor z0 po Gaussovi po-
razdelitvi (vrstica 7) in izračunamo smerni vektor s med
vzorčenim ter karakterističnim vektorjem (vrstica 8). Ta
vektor določa smer proti podprostoru, znotraj katerega
je razdalja Di ∈ D od kateregakoli vzorčenega vektorja
z do pripadajočega karakterističnega vektorja zci manjša
kot razdalja Dj ∈ D, j ̸= i do poljubnega drugega ka-
rakterističnega vektorja zj ∈ Z, j ̸= i znotraj drugega
podprostora. Vzorčen latentni vektor z premaknemo v
smeri proti karakterističnemu vektorju razreda za naključno
velik premik (vrstica 11) in preverimo, če se dobljeni vek-
tor z nahaja znotraj podprostora danega karakterističnega
vektorja (razdalja do njegovega karakterističnega vektorja
je manjša kot druge razdalje). V tem primeru ga vrnemo
kot rezultat funkcije (vrstica 14). V nasprotnem primeru
izbiramo naključno velike premike, dokler se dobljen vek-
tor z ne nahaja znotraj podprostora izbranega karakteri-
stičnega vektorja.

Psevdokod 1 Vzorčenje latentnega vektorja v razdelje-
nem.

1: function VZORČI-LATENTNI-VEKTOR(ci, Z, d)
2: ▷ ci: razred, katerega vzorec generiramo
3: ▷ Z: množica karakterističnih vektorjev
4: ▷ d: dolžina latentnega vektorja
5: ▷ Rezultat: latentni vektor z
6: zci ← PridobiKarakterističniVektor(ci, Z)
7: z0 ← VzorčiLatentniProstor(d)
8: s← zci − z0 ▷ Smerni vektor
9: loop

10: r ← NaključnoŠtevilo(0, 1)
11: z ← z0 + r · s
12: D ← IzračunRazdalj(z, Z)
13: if IndeksNajmanjšega(D) == i then
14: return z
15: end if
16: end loop
17: end function

3 Rezultati
Pri testiranju metode smo uporabili lastno podatkovno
zbirko črk in številk v vektorskem zapisu. Sestavljajo jo
črke slovenske in angleške abecede ter številke, kar sku-
paj predstavlja 39 različnih simbolov. Pred generiranjem
vzorcev surove podatke (v obliki zaporedja točk) predob-
delamo, tako da izvedemo normalizacijo ”min-max” (glede
na daljšo stranico oklepajočega okvirja), poenostavimo
zaporedja točk z uporabo algoritma Douglas-Peucker [10]

in jih pretvorimo v vektorsko predstavitev fiksne dolžine.
Vsak vektor med zaporednima dvema točkama je opisan
s tremi vrednostmi: s premikom po osi x, premikom po
osi y in z indikatorjem aktivnosti peresa (ali je poteza
vidna ali predstavlja premik dvignjenega peresa). Vsak
simbol je predstavljen z 10 vektorji, pri čemer je maksi-
malno število potez 5 (izbrano empirično za prepoznavne
simbole z malo šuma). Primere tako predobdelanih po-
datkov prikazuje slika 2.

Slika 2: Primeri predobdelanih podatkov v vektorskem
zapisu. Modra barva označuje poteze pred morebitnim
dvigom peresa, rdeča barva poteze po prvem dvigu, ze-
lena barva pa poteze po dveh dvigih.

Med učenjem GAN-a merimo izgubo z binarno prečno
entropijo. Zaradi okrnjenega nabora podatkov uporabimo
postopek razširitve učne množice (angl. data augmen-
tation), pri kateri z dodajanjem šuma iz vsakega učnega
vzorca dobimo 10 umetnih vzorcev. Za povečanje stabil-
nosti učenja in preprečevanja eksplodirajočih gradientov
režemo gradiente po normi L2. Oba modela, generator in
diskriminator, poleg osnovnega vhoda vsebujeta dodaten
signal, ki pove, kateri simbol želimo generirati (v primeru
generatorja) ali oceniti (v primeru diskriminatorja): zato
govorimo o pogojnem GAN-u (angl. conditional genera-
tive adversial network, krajše cGAN). Generator je sesta-
vljen iz treh konvolucijsko povratnih plasti ConvGRU in
1D-konvolucije, diskriminator pa je triplastni perceptron.
Arhitekturi generatorja in diskriminatorja prikazuje slika
3.

Vložitev

Oznake simbolov

Polno povezan sloj

1D-konvolucija

1D-konvolucija

Latentni vektorji

Generirani vzorci

(a)



318

Vložitev

Oznake simbolov

Polno povezan sloj

Polno povezan sloj

Polno povezan sloj

Vzorci

Ocene vzorcev

(b)

Slika 3: Arhitekturi generatorja (a) in diskriminatorja (b).

Hiperparametre učenja smo določili eksperimentalno,
zbrani pa so v tabeli 1. Prikazane hiperparametre smo
uporabili tako za učenje GAN-a brez delitve latentnega
prostora kot tudi GAN-a z delitvijo latentnega prostora.

Tabela 1: Izbrani hiperparametri učenja.

Hiperparameter Vrednost
Število epoh 10.000

Velikost minipaketa 64
Velikost latentnega vektorja 100

Stopnja učenja 0,002

Rezultate učenja generatorja, ko latentni prostor ni
bil razdeljen v podprostore, prikazuje slika 4, pri čemer
smo generirali simbole dvakrat z različnimi latentni vek-
torji. Vidimo lahko, da so vsi simboli prepoznavni in
da generator proizvaja vzorce s podobnimi značilnostmi,
kot jih imajo izhodiščni učni vzorci. Opazimo lahko,
da padca modusa pri posameznih simbolih ni, saj so ti
pri večkratnem generiranju raznoliki in imajo drugačne
značilnosti na sliki 4 (opazno predvsem pri simbolih Y
in 4). Rezultate učenja generatorja z delitvijo latentnega
prostora prikazuje slika 5. Čeprav se je generator naučil
proizvajati določene razrede vzorcev, pa določenih vzor-
cev ne zmore generirati (denimo A, B, K in 5). Opa-
zimo lahko tudi, da pri večkratnem generiranju določeni
simboli nimajo velike raznolikosti, kar lahko nakazuje na
(delni) pojav padca modusa [11].

Tabela 2 prikazuje povprečno kvadratno razliko (angl.
mean squared difference, krajše MSD) in normalizirano
korenjeno povprečno kvadratno razliko (angl. normali-
sed root mean squared difference, krajše NRMSD) med
pari vzorcev istih razredov glede na način vzorčenja la-
tentnega prostora. Izkaže se, da sta pri delitvi latentnega
prostora MSD in NRMSD večji, saj generator ne zmore

(a)

(b)

Slika 4: Rezultati generatorja brez delitve latentnega pro-
stora: (a) Prva iteracija generiranja. (b) Druga iteracija
generiranja.

(a)

(b)

Slika 5: Rezultati generatorja z delitvijo latentnega pro-
stora: (a) Prva iteracija generiranja. (b) Druga iteracija
generiranja.

kvalitetno generirati določenih vzorcev in namesto njih
generira raznolike, a nerealne krivulje.

Tabela 2: Primerjava generiranih rezultatov brez in z de-
litvijo latentnega prostora.

Vzorčenje latentnih vektorjev MSD NRMSD
Brez delitve latentnega prostora 0,016761 0,067375
Z delitvijo latentnega prostora 0,038333 0,105576

Razlog za nezmožnost generiranja določenih vzorcev
bi lahko bil ta, da latentni vektor nima vedno enake po-
razdelitve. Predlagana metoda vzorči latentni prostor po
Gaussovi porazdelitvi, nato pa pomika začetni vzorec v
smeri podprostora izbranega razreda. Posledično so kom-
ponente latentnih vektorjev poljubno porazdeljene, zato
se generator ni zmožen naučiti preslikave latentnih vek-



319

torjev v realne vzorce.

4 Zaključek
Članek predstavlja študijo vpliva delitve latentnega pro-
stora v podprostore na učenje GAN-ov z vektorskimi po-
datki. Predlagana metoda vzorčenja latentnih vektorjev v
razdeljenem latentnem prostoru vsakič izbere drug laten-
tni vektor, ki pa se nahaja znotraj latentnega podprostora
posameznega razreda. Metodo smo testirali na lastni po-
datkovni zbirki simbolov slovenske in angleške abecede
v vektorski obliki. Rezultati izkazujejo, da učenje GAN-
a brez delitve latentnega prostora deluje bolje kot z de-
litvijo latentnega prostora, saj se pri delitvi latentnega
prostora stabilnost učenja ne poveča. Poleg tega se poja-
vljajo posamezni simboli, kjer je opazen padec modusa,
in simboli, kjer generator ne zajame prave gostote poraz-
delitve realnih podatkov. Glede na opisano delitev laten-
tnega prostora v teoriji sicer ponuja stabilnejše učenje,
a se v praksi pri vektorskih podatkih ne izkaže kot upo-
rabna tehnika za učenje GAN-a.

Zahvala
Raziskovalno delo je sofinancirala Javna agencija za znan-
stvenoraziskovalno in inovacijsko dejavnost Republike Slo-
venije v okviru programa mladih raziskovalcev s številko
0796-59772 in raziskovalnega programa s številko P2-
0041.

Literatura
[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in Neural In-
formation Processing Systems 27 (NIPS 2014) (Z. Gha-
hramani, M. Welling, C. Cortes, N. Lawrence, and K. We-
inberger, eds.), (Montreal, QC, Canada), Dec. 2014.

[2] J. Zhang, “Generative adversarial networks,” Feb. 2018.
Accessed: Jun. 5, 2025. [Online.] Available: ht-
tps://tjmachinelearning.com/lectures/1718/gan/.

[3] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam,
“Optimizing the latent space of generative networks,”
arXiv:1707.05776, May 2019.

[4] Z. Hou, N. Lang, and X. Zhou, “WL-GAN: Learning to
sample in generative latent space,” Information Sciences,
vol. 700, p. 121834, May 2025.

[5] Y. Li, Y. Mo, L. Shi, and J. Yan, “Improving genera-
tive adversarial networks via adversarial learning in la-
tent space,” in Advances in Neural Information Proces-
sing Systems 35 (NeurIPS 2022) (S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), (New
Orleans, LA, USA), Dec. 2022.

[6] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clu-
sterGAN: Latent space clustering in generative adversarial
networks,” in Proceedings of the Thirty-Third AAAI Con-
ference on Artificial Intelligence, vol. 33, (Honolulu, HI,
USA), pp. 4610–4617, AAAI Press, July 2019.

[7] M. Armandpour, A. Sadeghian, C. Li, and M. Zhou,
“Partition-guided GANs,” in Proceedings of the 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), (Nashville, TN, USA), pp. 5099–
5109, IEEE, June 2021.

[8] A. Asperti and V. Tonelli, “Comparing the latent space of
generative models,” Neural Computing and Applications,
vol. 35, pp. 3155–3172, Feb. 2023.

[9] Y. Kossale, M. Airaj, and A. Darouichi, “Mode collapse
in generative adversarial networks: An overview,” in Pro-
ceedings of the 8th International Conference on Optimi-
zation and Applications (ICOA) (H. Hachimi, F. Masulli,
S. Rovetta, and M. Ribaudo, eds.), (Genoa, Italy), pp. 1–6,
IEEE, Oct. 2022.

[10] A. Saalfeld, “Topologically consistent line simplification
with the Douglas-Peucker algorithm,” Cartography and
Geographic Information Science, vol. 26, no. 1, pp. 7–18,
1999.

[11] A. Brock, J. Donahue, and K. Simonyan, “Large scale
GAN training for high fidelity natural image synthesis,”
arXiv:1809.11096, Feb. 2019.


