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Synthetic Simulator Based on Research 

Datasets for Cybersecurity 

Abstract. One of the challenges in the cybersecurity 

domain is the static nature and absence of up-to-date 

datasets, which significantly limit the ability of artificial 

intelligence techniques to learn, understand, and protect 

against the latest cyberattacks (i.e., the ability to 

simulate and analyze modern attack patterns is vital). 

This article proposes a synthetic simulator that 

integrates existing cybersecurity research datasets with 

dynamic agent-based environments inspired by real-

time strategy games. Experimental validation using a 

ransomware dataset demonstrates that data-driven 

agents achieve 42% higher success rates than baseline 

random approaches, proving the practical value of 

transforming static research data into dynamic, 

trainable cybersecurity simulation platforms for 

enhanced threat detection and response capabilities. 

 

1 Uvod 

V medijih pogosto zasledimo novice o vdorih v 

informacijske sisteme, kraji osebnih podatkov ali 

zlorabi digitalnih identitet. V preteklosti se je 

kibernetska varnost (angl. cybersecurity) pogosto 

enačila z varnostjo informacijsko-komunikacijske 

tehnologije (IKT), kar pa ne zajema vseh vidikov 

sodobnih groženj. Danes se kibernetska varnost ob 

prodoru umetne inteligence (angl. Artificial Intelligence, 

AI) sooča s preporodom, ki prinaša nove priložnosti za 

zaščito, hkrati pa tudi številne izzive [1], med katerimi 

so tako tehnični kot organizacijski in človeški dejavniki. 

 Preden se spustimo na tehnični nivo izzivov, je 

smiselno podati delovno definicijo kibernetske varnosti, 

saj splošna, enotna definicija (zaenkrat) ne obstaja [2]. 

V priročniku kibernetske varnosti Urada vlade 

Republike Slovenije za informacijsko varnost [3] je 

kibernetska varnost opisana kot praksa zaščite omrežij, 

sistemov, podatkov in informacijskih tehnologij pred 

zlorabami (npr. nepooblaščen dostop) ter vključuje 

tehnološke, procesne in človeške dejavnike skupaj s 

politiko (angl. policy). Zaradi vpliva teh dejavnikov, 

kibernetske varnosti ni mogoče enačiti zgolj z zaščito 

IKT. 

 Na področju kibernetske varnosti lahko najdemo 

področja, kot so ribarjenja (angl. phishing), napade 

onemogočanja, kot je na primer napad s porazdeljeno 

zavrnitvijo storitve (angl. denial-of-service attack) z 

omrežji botov (tj., omrežja okuženih naprav), okužbe 

računalnikov (npr. izsiljevalsko programje), vdore v 

strežnike, izgube gesel, itd.  

 V raziskavi se osredotočamo na podatkovne zbirke 

izsiljevalske programske opreme (angl. ransomware), ki 

šifrira podatke žrtve z namenom izsiljevanja. Zaradi 

hitrega razvoja predstavlja velik izziv za raziskovalce. 

Različni napadi zahtevajo različne pristope, ki so danes 

predvsem usmerjeni v umetno inteligenco, zlasti v 

inteligentne agente in agentno modeliranje, kjer se 

napadalci in branilci obravnavajo kot avtonomni agenti 

s specifičnimi strategijami in cilji [4]. 

 Osnovni cilj prispevka je prikazati, kako lahko 

statične zbirke podatkov uporabimo kot osnovo za 

razvoj dinamičnih (sintetičnih) simulatorjev. Ti 

omogočajo izvajanje simulacijskih scenarijev, kot je na 

primer usklajen napad več napadalcev na varnostni 

sistem, pri čemer lahko analiziramo metrike, kot so 

uspešnost napada, obseg škode in odzivnost obrambnih 

mehanizmov. Kot drugi cilj prispevka pa je prikaz tega, 

kako lahko v teh simulatorjih integracija značilk iz 

statičnih podatkovnih zbirk izboljša uspešnost 

inteligentnih agentov v primerjavi z osnovnimi 

naključnimi pristopi. 

 Struktura članka je naslednja. V drugem poglavju 

najprej na kratko opišemo teoretično ozadje 

raziskovalnih področij kibernetske varnosti in njeno 

povezavo z AI.  V tretjem poglavju je predstavljena 

arhitektura sintetičnega simulatorja ter logistična 

regresija kot metoda za odločanje znotraj inteligentnega 

napadalnega agenta. V četrtem poglavju sledi opis 

eksperimenta. Peto poglavje je namenjeno predstavitvi 

rezultatov ter krajši diskusiji. V šestem poglavju sledi 

zaključek in predlogi za prihodnje raziskave. 

 

2 Teoretično ozadje povezave umetne 

inteligence in kibernetske varnosti  

Uporaba AI v kibernetski varnosti se je razvila od 

osnovne avtomatizacije do kompleksnih algoritmov, ki 

zaznavajo in preprečujejo grožnje v realnem času. Sprva 

so raziskave obravnavale preproste sisteme za 

zaznavanje vdorov (angl. Intrusion Detection Systems, 

znane pod kratico IDS), z napredkom AI pa so se 

razvila podpodročja, kot je strojno učenje [5], ki 

omogoča prilagajanje novim grožnjam in odkrivanje 

neznanih napadov. 

 Sodobni algoritmi strojnega učenja običajno 

potrebujejo velike količine kakovostnih podatkov za 

namen treninga in validacije [6]. Sintetični simulatorji 

lahko pri tem pomagajo, saj omogočajo funkcionalnost 

dinamičnega okolja, kjer se algoritmi učijo prilagajati 
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spreminjajočim se pogojem in interakcijam. To je še 

posebej pomembno za napredne algoritme iz veje 

okrepitvenega učenja, kjer je ključnega pomena 

simulacija realističnih scenarijev, osnovanih na 

kvalitetnih sintetičnih podatkih za optimalno učenje 

modelov [7]. 

 V praksi, lahko k problemu izsiljevalske programske 

opreme pristopimo preko statične ali pa dinamične 

analize [8]. Pri statični analizi se preverja struktura in 

koda programske opreme (npr. katere programske 

inštrukcije se izvršujejo), brez da bi jo izvršili. 

Dinamična analiza pa poteka tako, da v varovanem 

okolju izvršimo izsiljevalsko programsko opremo in 

opazujemo njeno delovanje ter učinke. 

 V zadnjih letih se uveljavlja uporaba generativnih 

modelov, zlasti generativnih nasprotniških mrež (angl. 

Generative Adversarial Networks), za ustvarjanje 

sintetičnih podatkov napadov [9]. Ti pristopi omogočajo 

generiranje realističnih vzorcev za učenje modelov 

zaznavanja groženj, a se soočajo z izzivi kakovosti, 

ohranjanja značilnosti napadov in tveganja 

prekomernega prileganja. Naš pristop namesto 

ustvarjanja podatkov povsem na novo, integrira značilke 

obstoječih zbirk v dinamično simulacijsko okolje, kar 

zagotavlja večjo sledljivost, prilagodljivost in varnost. 

  

3 Sintetični simulator za kibernetsko 

varnost 

V nadaljevanju predstavljamo koncept in arhitekturo 

sintetičnega simulatorja, ki omogoča prehod iz statičnih 

raziskovalnih podatkovnih zbirk v dinamično 

simulacijsko okolje. Tak pristop je ključen za 

naslavljanje omejitev tradicionalnih metod, saj omogoča 

eksperimentiranje z realističnimi scenariji, preverjanje 

hipotez in ocenjevanje učinkovitosti različnih strategij v 

varnem, nadzorovanem okolju. Poglavje se osredotoča 

na opis arhitekturnih slojev, integracijo podatkovnih 

značilk ter odločanje agentov, kar predstavlja temelj za 

nadaljnje empirične analize. 

3.1 Arhitektura sintetičnega simulatorja  

Simulator je sestavljen iz več komponent, ki skupaj 

omogočajo izvajanje dinamičnih simulacij kibernetskih 

napadov (slika 1). Arhitektura je razdeljena na štiri 

glavne sloje, ki so opisani v nadaljevanju. 

 1. Sloj za upravljanje podatkov omogoča nalaganje 

in obdelavo podatkovnih zbirk (tj., datoteke tipa csv). 

Sistem samodejno prepozna tipe atributov, izračuna 

normalizacijske vrednosti (min/max) in omogoča ročno 

filtriranje po značilkah. Implementirani so nastavki, da 

se več značilk iz podatkovnih zbirk lahko združi v 

enoten vir podatkov za simulacijo. 

 2. Simulacijsko okolje modelira omrežje kot graf 

vozlišč, kjer vsako vozlišče predstavlja sistem z 

določeno varnostno stopnjo (1-10) (oznaka S na Sliki 1) 

in vrednostjo podatkov (1-100) (oznaka D na Sliki 1). 

Vrednost podatkov se določi na podlagi značilk iz 

podatkovne zbirke prenosljivih izvršljivih datotek (angl. 

Portable Executable, PE), pri čemer se strukturne 

značilke kot so velikost kode, skupna velikost struktur 

in prisotnost določenih sekcij preslikajo v oceno 

pomembnosti vozlišča. Ta pristop omogoča direktno 

preslikavo statičnih značilk iz raziskovalnih 

podatkovnih zbirk v dinamične atribute simulacijskega 

omrežja. Če podatki iz zbirke niso na voljo, se uporabi 

naključna vrednost. Ta vrednost služi kot kazalnik 

pomembnosti vozlišča in vpliva na odločitve napadalcev 

ter prioritete branilcev. Agenti (napadalci in branilci) se 

premikajo med vozlišči, izvajajo napade ali obrambne 

ukrepe, medtem ko se stanje simulacije sproti beleži za 

namene raznih analiz. 

 3. Arhitektura agentov omogoča enostavno 

dodajanje novih tipov. Napadalni agenti izbirajo cilje 

glede na nizko varnostno stopnjo in visoko vrednost 

podatkov, njihovo vedenje pa temelji na hevristikah, 

inteligentnih rešitvah iz AI ali, kot v našem primeru, na 

logistični regresiji, ki ocenjuje verjetnost uspešnega 

napada na posamezno vozlišče. Logistična regresija je 

bila izbrana zaradi interpretativnosti in nizke računske 

zahtevnosti. V prihodnje načrtujemo vključitev dodatnih 

algoritmov, trenutno pa se osredotočamo na integracijo 

podatkovnih zbirk. Obrambni agenti patruljirajo po 

omrežju po vnaprej določenih pravilih, arhitektura pa 

omogoča nadgradnjo obeh vrst agentov z bolj 

prilagodljivimi modeli. 

 

  
  

4. Vizualizacija in nadzor vključuje grafični vmesnik, ki 

prikazuje omrežje, gibanje agentov in ključne metrike 

(npr. število napadenih ter ubranjenih vozlišč). 

Uporabnik lahko nadzoruje potek simulacije (začetek, 

pavza, ponastavitev) ter izvozi rezultate za nadaljnjo 

analizo. Povečanje števila vozlišč omogoča modeliranje 

 

Slika 1. Primer delovanja simulacijskega okolja za 

kibernetsko varnost 
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bolj kompleksnih in realističnih omrežnih topologij, 

vendar hkrati povečuje računsko zahtevnost simulacije 

(npr. večje število interakcij med agenti in daljši čas 

izvajanja). Arhitektura simulatorja je zasnovana tako, da 

podpira skaliranje na večje omrežje, pri čemer je možno 

dodajati tudi nove tipe agentov, če scenarij to zahteva. 

 Potrebno je še omeniti, da gre za prvo iteracijo 

simulatorja. Ta še ne predstavlja popolne kopije (ena 

proti ena) izsiljevalske programske opreme v realnem 

okolju, temveč njen čim boljši približek, zasnovan na 

razpoložljivih podatkovnih zbirkah. 

 

3.2 Uporaba logistične regresije kot metode 

delovanja napadalnega agenta 

Za napadalne agente je implementirana logistična 

regresija, ki ocenjuje verjetnost uspešnega napada na 

posamezno vozlišče. Model je treniran na statičnih 

podatkovnih zbirkah, uteži pa se ob inicializaciji 

naložijo iz konfiguracijske datoteke. Med simulacijo 

agent uporablja cenitveno komponento, ki na podlagi 

linearne kombinacije značilk in uteži izračuna verjetnost 

napada (pretvorjeno s sigmoidno funkcijo). Na podlagi 

teh ocen agent izbira cilje, pri čemer dodatni dejavniki, 

kot so predhodni napadi ali nedavni obiski, vplivajo na 

končno odločitev. 

 Značilke, ki jih model uporablja, so trenutno v kodi 

ročno zapisane. V prihodnosti je tudi dodatno 

predvidena razširitev sistema, ki bo omogočala 

samodejno izbiro značilk na podlagi konfiguracije ali 

analize pomembnosti. 

 

4 Opis eksperimenta 

Za izvedbo eksperimenta smo uporabili osebni 

računalnik z Intelovim procesorjem i7-9700, 32 GB 

pomnilnika, ter naloženim operacijskim sistemom 

Windows 11 Pro. Simulator je bil v celoti razvit v 

okviru raziskave in implementiran v programskem 

jeziku Java (različica 22) z uporabo razvojnega okolja 

IntelliJ IDEA 2024.2.2 (Community Edition). 

Arhitektura in funkcionalnosti so zasnovane namensko 

za prikaz integracije raziskovalnih podatkovnih zbirk v 

dinamično simulacijsko okolje. 

 Tekom eksperimentalnega dela je bila kot vir 

podatkov uporabljena podatkovna zbirka (leto 2024), 

imenovana »Ransomware Combined Structural Feature 

Dataset« (slov. zbirka kombiniranih strukturnih značilk 

izsiljevalske programske opreme) [10], ki spada na 

področje raziskav izsiljevalske programske opreme. 

Zbirka vsebuje 2.675 vzorcev binarnih izvršljivih 

datotek (2.157 v učni in validacijski množici ter 518 v 

testni), pri čemer vključuje več družin izsiljevalske 

programske opreme (25 v učni množici, 15 v testni), kar 

zagotavlja reprezentativnost in možnost preverjanja 

generalizacije modela. V okviru našega dela smo 

uporabili datoteko header.csv, ki vsebuje 80 strukturnih 

značilk iz zaglavij PE datotek, kot so velikosti 

pomnilniških rezervacij, parametri zagona in 

informacije o strukturi datoteke. To zbirko smo izbrali, 

ker omogoča enostavno preslikavo značilk v 

simulacijsko okolje in uporabo v regresijskem modelu. 

V praksi se za raziskave in učenje modelov običajno 

uporabljajo javno dostopne raziskovalne podatkovne 

zbirke, saj neposredno zbiranje in izvajanje izsiljevalske 

kode predstavlja varnostna tveganja in pravne omejitve. 

 Zavedamo se, da obstajajo tudi druge zbirke, kot je 

MLRan [11] (vedenjski podatki, 4.800 vzorcev, 64 

družin), ki temelji na dinamični analizi in je primerna za 

raziskave vedenjskih značilk. Vendar naš cilj ni bil 

analiza dinamičnega vedenja, temveč prikaz 

izvedljivosti integracije statičnih značilk v sintetični 

simulator, zato smo izbrali zbirko, ki omogoča 

neposredno uporabo strukturnih značilk brez potrebe po 

kompleksni dinamični analizi. 

 Te značilke se uporabljajo v regresijskem modelu za 

napoved verjetnosti ogroženosti vozlišča. Model temelji 

na logistični regresiji z utežmi, pridobljenimi med 

učenjem in shranjenimi v datoteki lr_weights.json. 

Izbrane so značilke z največjimi absolutnimi utežmi, 

med njimi LoaderFlags, DllCharacteristics, 

SizeOfCode, EXCEPTION_VA in RESOURCE_VA. 

 Za namen primerjave delovanja in učinkovitosti 

agentov sta implementirana dva agenta z različnimi 

strategijami odločanja, in sicer, naključni agent ter 

napadalni agent z uporabo logistične regresije. 

Naključni agent predstavlja osnovni primerjalnik, ki 

izvaja izključno stohastične odločitve brez uporabe 

podatkovne zbirke. Pri poskusu napada na vozlišče se 

uporablja naključno določena osnovna verjetnost 

uspeha, ki smo jo določili na zaprtem intervalu razpona 

20-70 %. Vključena pa je tudi preprosta strategija 

izogibanja zadnjim trem obiskanim vozliščem (tj., da se 

preprečuje takojšnja povratna gibanja). 

 Napadalni agent z uporabo logistične regresije 

(NapadalniAgentRegresija) implementira hibridni 

pristop odločanja, kjer 85 % odločitev temelji na 

logistični regresiji z uporabo PE značilk, preostalih 15 

% pa predstavljajo naključne izbire za zagotavljanje 

nepredvidljivosti. Agent uporablja enako osnovno 

verjetnost uspešnosti napadov ([20, 70] %) kot naključni 

agent, vendar jo prilagaja na podlagi logističnega 

rezultata, z dodatno modifikacijo ±20 %. Pri izbiri ciljev 

kombinira regresijski rezultat z mrežnimi faktorji 

(varnostna raven vozlišča, vrednost podatkov, nedavni 

obiski, povezanost), pri čemer izbere vozlišče z 

najboljšim kombiniranim rezultatom. Oba agenta 

delujeta v enakih simulacijskih pogojih z istimi 

začetnimi parametri, kar omogoča neposredno 

primerjavo vpliva vključevanja podatkovnih zbirk na 

uspešnost napada.  

 Simulator tudi omogoča agentom, ki uporabljajo 

podatkovne zbirke, izločanje značilk, ki bi lahko 

umetno izboljšale napovedno moč modela (npr. ID, GR, 

FamilyID). Te so obravnavane kot "značilke uhajanja" 

(angl. leakage features) in se izključijo iz obravnave pri 

zbiranju vseh dostopnih značilk iz podatkovne baze. 

 Za statistično zanesljivost rezultatov se izvede 50 

neodvisnih scenarijev za vsakega agenta, pri čemer vsak 

scenarij obsega 200 iteracij z možnostjo gibanja agenta 

med povezanimi vozlišči. Agenti se premikajo z 

optimizirano hitro strategijo gibanja, kjer se celotna pot 

do ciljnega vozlišča izračuna vnaprej in izvede v 
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maksimalno petih korakih, kar zagotavlja odzivnost 

simulacije brez vpliva na logiko odločanja. 

 Vsi scenariji uporabljajo mrežno topologijo s 15 

vozlišči in naključno generirano povezanostjo (dve do 

štiri povezave na vozlišče), pri čemer se za vsak scenarij 

ustvari novo omrežje z različnimi parametri (varnostna 

raven 1–10, vrednost podatkov 1–100). Agenti začnejo 

na vozlišču 0. Vsak scenarij beleži metriko uspešnih in 

neuspešnih poskusov napadov, na podlagi česar se 

izračunajo povprečna uspešnost, standardni odklon in 

razpon uspešnosti za statistično analizo. 

 Namen eksperimenta je preveriti, ali podatkovne 

zbirke PE datotek izboljšajo uspešnost napadalnih 

agentov v primerjavi z naključnim odločanjem. 

 

5 Rezultati in diskusija 

V tabeli 1 so predstavljeni rezultati eksperimenta. 

Tabela 1. Rezultati eksperimentalne primerjave obeh agentov 

Metrika Naključni 

agent 

Napadalni 

agent 

Δ 

Povprečna 

uspešnost 

 

Razpon 

uspešnosti 

 

Standardni 

odklon 

 

Skupaj 

poskusov 

 

Razmerje 

uspeha 

47,99 % 

 

 

30,0 –  

66,7 % 

 

9,17 % 

 

 

1.110 

 

 

523:587 

(0,89:1) 

68,23 % 

 

 

50,00 – 

93,75 %  

 

10,51 % 

 

 

1.079 

 

 

721:358 

(2:1) 

+20,24 % 

 

 

- 

 

 

- 

 

 

- 

 

 

1:2 

 

Napadalni agent je dosegel povprečno uspešnost 68,23 

% v primerjavi z 47,99 % naključnega agenta, kar 

predstavlja statistično značilno izboljšanje za 20,24 

odstotnih točk oziroma 42 % relativno povečanje 

učinkovitosti. Še bolj izrazita je razlika v razmerju 

uspešnih proti neuspešnim napadom, kjer napadalni 

agent dosega dva uspešna napada na vsakega 

neuspešnega (2:1), medtem ko naključni agent dosega 

manj kot en uspešen napad na vsakega neuspešnega 

(0,89:1). 

 

6  Zaključek 

Dokazana učinkovitost pristopa nakazuje, da lahko 

statične podatkovne zbirke služijo kot dragocen vir 

znanja za dinamične simulacijske sisteme na področju 

kibernetske varnosti. 

 V prihodnje bo simulator deležen številnih 

nadgradenj, kot je na primer bolj robusten sistem izbire 

značilk, ki ga želimo iz ročnega prenesti v 

avtomatizirane strojne variante preko uporabe metod, 

kot so samodejno učenje značilk (angl. feature 

learning), izbira značilk na podlagi pomembnosti (angl. 

feature importance ranking) ter z evolucijskimi 

algoritmi za optimizacijo izbora. Cilj je zmanjšati 

odvisnost od ročnega izbiranja značilk ter povečati 

učinkovitost in ponovljivost analiz. Nadgradnje bodo 

zajele tudi simulacijski pogon in mehanike, vključno z 

razširitvijo na druge tipe napadov, naprednejše 

upravljanje scenarijev ter shranjevanje zgodovine in 

ponovni prikaz (angl. replay) simulacij. 
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