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strojno učenje in optimizacijo hiperparametrov s pomočjo
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Harnessing High-Performance Computing
for Distributed Machine Learning

Hyperparameter Optimization Using
Differential Evolution

From a scientific point of view, we are interested in how
efficiently optimization techniques perform when we take
into account their performance and consumption of com-
puting resources, with an emphasis on energy-efficiency
and sustainability in Artificial Intelligence (AI). There-
fore, we have examined Differential Evolution (DE) op-
timization strategies in the context of machine learning
(ML) of previously trained models and how they affect in-
dividual observation metrics when applied to real-world
workflows within a high-performance computing (HPC)
environment. Here, we want to highlight the importance
of optimization and the efficiency of the selection of indi-
vidual ML models and DE, taking into account the results
obtained from the Slurm job scheduler. The experiment
was conducted using the largest national petascale HPC.

1 Uvod
Novi pristopi, hitra rast in delovne obremenitve umetne
inteligence, kjer kompleksnost narašča, zahteva precej-
šnjo količino računalniških virov, kar vodi v konvergenco
od petaskalirne do po-eksaskalirne računalniške dobe [1].
Ker so podatkovni centri med največjimi porabniki in iz-
pusti ogljika, se je pri tem ustvarila velika vrzel v priza-
devanjih za prehod na bolj trajnostne pristope in strate-
gije [2]. Prehod vodi do omejitev, kjer je potrebno uve-
sti učinkovite in temeljne mehanizme za trajnost [3, 4].
Zaradi različnih arhitektur in mehanizmov med sistemi
se za zmanjšanje porabe računske moči lahko uporabijo
učinkovitejši pristopi s ciljem zmanjšanja globalnega od-
tisa [3]. Zelo pomembno vlogo imajo tudi uporabniki, ki
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pridejo z različnim strokovnim znanjem iz različnih po-
dročij [5, 6]. Čeprav so na voljo tudi najboljše prakse in
smernice, ki pomagajo pri učinkoviti in optimalni upo-
rabi sistemov, uporabniki pogosto nimajo predhodnega
znanja o HPC in morda ne dajejo prednosti učinkoviti
uporabi in optimalnemu delovanju svojih delovnih obre-
menitev [7, 8]. Prav tako ni enotnega sistema za spre-
mljanje in upravljanje porabe energije, saj se uporabljene
tehnologije razlikujejo glede na posamezen sistem [7].
Dodatno so lahko metode, kot na primer ročno iskanje,
naključno iskanje, Bayesova optimizacija, lahko časovno
in računsko potratne, še posebej pri delu s kompleksnimi
modeli in večjimi nabori podatkov [9–11].

V prispevku predstavljamo optimizacijo hiperparame-
trov konvolucijske nevronske mreže ResNet18 [12] na
naboru podatkov MNIST in Fashion-MNIST, s pomočjo
nadgradnje osnovnega populacijskega algoritma diferen-
cialne evolucije (DE) [13]. Za nadzorovano strojno učenje
in izvedbo zasnovanega eksperimenta smo uporabili de-
lovni tok in predhodno naučene modele strojnega učenja,
kjer smo izvedli dodatno uglaševanje modela na doda-
tnih podatkovnih zbirkah [14]. Dodatno smo uporabili
delovni tok AutoDEHypO, ki je podrobneje predstavljen
v članku [14]. S takšno nastavitvijo smo lahko upora-
bili uglaševanje različnih vidikov hiperparametrov. Tako
predstavlja optimizacija hiperparametrov pomemben vi-
dik strojnega učenja, kjer lahko iskanje optimalnega na-
bora parametrov izboljša delovanje delovnih obremenitev
in modela [14]. Prvotno je bil delovni tok ovrednoten z
uporabo predhodno naučenih modelov strojnega učenja,
kot so ResNet18, DenseNet121, ConvNextSmall in
VGG11, ob klasifikaciji slik z več oznakami na naboru
podatkov zbirke CIFAR 10 in 100 [14, 15]. Delovni tok
smo nadgradili in vključili dva dodatna nabora podat-
kov [16, 17]. Metoda nam omogoča izkoriščanje DE za
učinkovito preiskovanje iskalnega prostora in ponuja
rešitev za optimizacijo hiperparametrov modelov stroj-
nega učenja [14]. Eksperiment smo izvedli z uporabo
superračunalnika HPC Vega [5], kjer smo na izbrani in-
frastrukturi izkoristili vzporedno računanje na grafičnih
procesorskih enotah (GPE), kar pospeši preiskovanje pro-
stora hiperparametrov in skrajša skupni čas do rešitve [14].

Naslednji razdelki tega prispevka so organizirani na
naslednji način. Razdelek 2 ponuja pregled sorodnih del
in metod. Razdelek 3 opisuje metodologijo. Razdelek 4
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ponuja eksperimentalne rezultate. Razdelek 5 predstavlja
zaključek in prihodnje delo.

2 Sorodna dela in metode
Optimizacija je zaporedje korakov, ki izboljšajo kakovost
zadanega problema [18]. Probleme različnih razsežnosti
in oblik najdemo v različnih domenah, kot je čas, dimen-
zija ali meritev, kjer so lahko problemi predstavljeni kot
kriterijski vektorji glede na ovrednotenje rešitev v samem
prostoru spremenljivk [18]. Dodatno je smiselno naslo-
viti kriterije, metode z utežmi in omejitve samih opti-
mizacij, kot so metode z ohranjanjem dopustnih rešitev,
uporaba kazenskih funkcij, s strogim razlikovanjem med
dopustnostjo in nedopustnostjo vektorjev [18]. Optimi-
zacijski algoritmi se uporabljajo v strojnem učenju za iz-
boljšanje rezultatov, zlasti izgub v izbranem prostoru [18].
S pomočjo izbrane metode lahko optimiziramo hiperpa-
rametre še pred fazo učenja, kjer hiperparametri predsta-
vljajo konfiguracijske spremenljivke ML modela [9, 10].

2.1 Superračunalniško okolje in programje
Superračunalnik je skupek večjega nabora med seboj po-
vezanih vozlišč, ki zagotavljajo visoke zmogljivosti, ka-
tere merimo v številu operacij s plavajočo vejico na se-
kundo (FLOPS) in porabo energije v džúlih (J) [5]. Upo-
rabnost in izkoriščenost takšne infrastrukture narašča in
predstavlja hrbtenico inovacij v slovenski in evropski aka-
demski raziskovalni skupnosti kot tudi v industriji in
manjših podjetjih [6]. HPC tako omogoča pohitritev in
skrajšanje trajanja posameznih raziskav na različnih znan-
stvenih področjih vključno s strojnim učenjem [5, 6]. Za
zagotavljanje potreb programske opreme v raziskovalni
skupnosti in širše je znotraj uporabniškega okolja na voljo
nabor optimiziranega in nameščenega programja, vključno
s sistemskim programjem, vsebniki, knjižnicami in pre-
vajalniki programske kode, ki so med drugim porazde-
ljeni in dostopni uporabnikom na slovenskih gručah preko
oddaljenega datotečnega sistema CernVM-FS [5, 6]. Ob
upoštevanju priporočil si manjkajoče različice programja
lahko uporabniki pripravijo sami [6,19]. Uporabnikom je
prav tako na voljo večnivojska uporabniška podpora [5].
Za evropski delež je prav tako na voljo napredna aplika-
cijska podpora, ki je zagotovljena znotraj projekta EPI-
CURE [20]. Naloge lahko uporabniki oddajo in upra-
vljajo preko odprtokodne programske opreme Slurm [21].

Slurm je namenjen upravljanju in razporejanju z
računalniškimi viri [21]. Programska oprema skrbi za
okolje, pripravo nalog, čakalno vrsto, prioritete, ki vpli-
vajo kdaj se bodo naloge izvedle v povezavi z linuksom
(cgroups), poskrbi za omejitve pred, med in po izvaja-
nju, skrbi za uporabniške račune ter njihovo porabo, nad-
zoruje izvajanje, vse dejavnosti posameznih izvajanj pa
shrani v podatkovno bazo [21]. Omogoča prenosljivost
glede na arhitekturo gruče, visok nivo odpornosti na na-
pake, zagotavljanje varnosti vključno s hitro odpravo ran-
ljivosti in pomankljivosti, dostopna je izvorna koda, ki
omogoča hitro prilagodljivost in visok nivo skalabilnosti,
preprostost glede na konfiguracijo in preprostost uporabe
za končne uporabnike, kot tudi administratorje takšnih

sistemov, ki imajo na voljo dodatne funkcionalnosti [6,
21]. Pri tem pa Slovensko nacionalno superračunalniško
omrežje (SLING) uporabnikom zagotavlja poenoteno pro-
gramsko okolje znotraj gruč [5, 6]. Posamezni projekti
imajo glede na tip projekta, kot na primer veliki, regu-
larni, razvojni ali testni projekt, dodeljeno časovno ome-
jitev trajanja projekta in kvoto računskih virov, ki jo lahko
porabijo znotraj oddobrene alokacije [5]. Tako morajo
uporabnki poskrbeti za učinkovito izrabo dodeljenih
računske moči, kjer bi morali prav tako posvetiti pozor-
nost energijski učikovitosti [8, 22]. Uporabniki tako od-
dajo svoje naloge na različne načine, bodisi preko ukaza
srun ali predhodno pripravljene ter prenosljive skripte
bash (SBATCH), ki zagotovi ponovljivost in avtomati-
zacijo ali interaktivno s pomočjo ukaza salloc, kjer se
ustvari rezervacija na posameznem vozlišču vključno z
interaktivno sejo [5, 6, 21].

2.2 Točka preverjanja in ponovni zagon
Točka preverjanja in ponovni zagon predstavljata meha-
nizem, za shranjevanje delovnih tokov [14]. Shranjene
točke je mogoče pozneje znova zagnati, kar pomeni krajši
čas izvajanja, manjšo porabo energije in možnost odpra-
vljanja napak, ki se lahko pojavijo med izvajanjem de-
lovne obremenitve [14]. Takšen mehanizem zagotavlja
toleranco napak in odpornost na različne okvare, kot je
na primer odpoved strojne opreme, napake na omrežju ali
znotraj programske opreme [14], za dosego združljivosti
raznolikega programja glede na izbrano arhitekturo, kot
je na primer CPE in GPE, kot tudi vsebniška okolja, kjer
je potrebna prilagoditev programske kode. [14].

2.3 Diferencialna evolucija
Algoritem diferencialne evolucije (DE) je del populacij-
skih algoritmov in sta ga leta 1995 predstavila Storn in
Price [23]. DE se uporablja na področju optimizacije
numeričnih funkcij in aplikacij znotraj različnih domen-
skih področij [23]. Osnovni DE ima glavno evolucij-
sko zanko, skozi katero se s pomočjo ključnih in osnov-
nih operatorjev, kot so inicializacija, mutacija, križanje in
selekcija, po inicializaciji končni rezultat postopoma iz-
boljšuje s ponavljanjem operatorjev, dokler se ne najde
najboljša vrednost [23]. Na samem področju DE so tudi
nenehne izboljšave, kot na primer Strukturirana diferen-
cialna evolucija za zmanjšanje velikosti populacije z več
strategijami mutacij (SPSRDEMMS), ki zagotavljajo sta-
tistično boljše rezultate kot podobni algoritmi, saj je zelo
prilagodljiv [24]. Algoritem jDE uvaja razširitev osnov-
nega DE, kjer je dodan mehanizem, ki omogoča dina-
miko, boljše vrednosti prilagaja velikost populacijskega
vektorja z iteracijami [25]. Adaptivno diferencialno evo-
lucijo na podlagi zgodovine uspeha (SHADE) sta razvila
Tanabe in Fukuaaga [26]. Algoritem SHADE se prilagaja
glede na krmilne parametre, skaliranje (F) in križanje
(CR) [26] in razširitve in optimizacija oziroma natančna
nastavitev osnovnega algoritma so prispevale k uspešnim
rezultatom v naslednjih letih, zato velja za učinkovit algo-
ritem [26]. Dodan je bil mehanizem za linearno
zmanjševanje populacije (LPSR) [27]. Obstajalo tudi iz-
peljani algoritmi, ki so v naslednjih letih prav tako zma-
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gali na tekmovanju [26, 28]. Algoritem je prekosil druge
algoritme tudi v resničnem okolju, kjer sta bili ocenjeni
zanesljivost in učinkovitost uporabe DE v oceanskih mi-
sijah in načrtovanju podvodnih poti (UGPP) avtonomnih
podvodnih vozil (AUV) [29]. Optimizacijski algoritem
na razdalji temelječe prilagajanje krmilnih parametrov za
diferencialno evolucijo, temelječo na uspehu (DISH) je
razširitev prejšnjega algoritma L-SHADE, ki vključuje
mehanizma za spreminjanje same velikosti populacije [18,
26]. Nadgradnja predhodno omenjenega algoritma DISH
je še DISHv, kjer gre za podoben pristop kot prejšnji algo-
ritem DISH, vendar imamo prenosljivo funkcijo z binar-
nimi parametri, kar posledično doprinese najboljši vektor
za velikost danega problem (D) [18, 30].

2.4 Zelene izboljšave na področju strojnega učenja
Napredek in razvoj na področju avtomatskega strojnega
učenja kažeta na potreben prispevek strategij in koncep-
tov zelene umetne inteligence (UI) v povezavi z energij-
sko učinkovitostjo [2, 31]. Rdeča UI, ki je osredotočena
na konvencionalne pristope ponovnega učenja modelov
strojnega učenja in maksimiranje točnosti [2]. Kot rezul-
tat pa naraste uporaba računskih virov, pri tem pa se za-
nemarja energijska učinkovitost [2]. Izboljšave in dokaz
koncepta, ki temelji na knjižnici Scikit-learn in primer-
java uporabljenih in potencialno primernih algoritmov s
poudarkom na zeleni UI je predstavljena znotraj članka [2].
Geissler in sodelavci so predstavili nov ozaveščen pri-
stop k optimizaciji hiperparametrov, ki temelji na zgo-
dnji zavrnitvi neučinkovitih konfiguracij hiperparametrov
za prihranek časa učenja strojnega učenja in porabe vi-
rov [32]. Evolucijski algoritmi so bili uporabljeni kot op-
timizatorji kot dodatek k AutoML, kot je izboljšan opti-
mizacijski okvir z uporabo evolucijskih algoritmov [33].
Vakhnin in sodelavci so predstavili večciljni hibridni evo-
lucijsko zasnovan okvir za natančno napovedovanje po-
rabe energije [34]. Gomes in sodelavci so predstavili pri-
merjalne študije, kjer je uporaba DE podajala boljše re-
zultate kot drugi algoritmi [35]. Prilagojenim študijam
glede na specifična področja manjka integracija in upo-
raba HPC okolja (Slurm) [31]. Kljub zmogljivostim no-
ben od podobnih orodij ne zagotavlja podpore za ener-
getsko učinkovitost, saj se za merjenje porabe energije
uporabijo dodatna orodja [14, 31].

2.5 Nabor podatkov
MNIST (Modified National Institute of Standards and Te-
chnology) je javna zbirka podatkov, ki vključuje ročne
zapise števil [16]. Fashion-MNIST je javna zbirka zbra-
nih sivinskih slik, ki prikazujejo različne kose oblačil,
razdeljene v 10 razredov [17]. Zbirki MNIST in Fashion-
MNIST vsebujeta vsaka po 60.000 slik (28 x 28) za
strojno učenje in 10.000 slik za preizkušanje [16, 17].

3 Metodologija
Za nadzorovano strojno učenje in izvedbo zasnovanega
eksperimenta smo uporabili predhodno naučene modele
strojnega učenja, kjer smo izvedli dodatno uglaševanje
modela na dodatnih podatkovnih zbirkah in nov primer

izkoriščanja delovnega tokova AutoDEHypO. V tem no-
vem primeru smo delovni tok nadgradili, uporabili krite-
rijsko funkcijo meritve napake za osnovno klasifikacijo
in vključili dodatna nabora podatkov MNIST in Fashion-
MNIST [16, 17]. Porabo računskih virov znotraj podat-
kovne zbirke beleži Slurm [21]. S pomočjo programja se
beleži poraba časa, pomnilnika, virov, diskovnih kapaci-
tet, porabljene energije, generičnih virov in številnih dru-
gih. Slurm te podatke beleži za posamezne uporabniške
račune, projekte in tudi posamezne naloge, kot je pred-
stavljeno na sliki 1. Uporabniki lahko pridobijo podatke
s pomočjo ukaza sacct. Primer takšnega ukaza, kjer
< jobid > zamenjamo z dejanskim identifikatorjem na-
loge. Dodatno je možno prilagoditi parametre znotraj sti-
kala format, kjer izberemo potrebne informacije.

sacct -u $USER -j <jobid> --format=\
JobID,ConsumedEnergy,CPUTime,elapsed,\
TresUsageOutAve,AllocTRES, \
partition --parsable2 --delimiter=";"

Oddaja nalog preko Slurm
HPC Infrastruktura

Vstopna vozlišča

Spletni brskalnik

Vstopna vozlišča CPE

Vstopna vozlišča GPE

sbatch / salloc / srun 

Spletna aplikacija

Particija GPE

Particija CPE

Računska vozlišča

Slurm

Ukazna vrstica

Prijava preko SSH / Kerberos + MFA

Uporabnik

Ukazna vrstica

Slika 1: Osnovni delovni tok oddaje opravil preko Slurm.

Izbrali smo nedavno vzporedno implementacijo algo-
ritma DE [36], ki vzporedno izvaja operacije s populacijo
znotraj samega algoritma. Uporabljeno okolje prav tako
vključuje vsebnik Singularity PyTorch, katerega delovni
tok je predstavljen na sliki 2.

AutoDEHypO

Oddaja naloge Vsebnik PyTorch Nabor podatkov

Python koda

Diferencialna evolucija

Inicializacija Mutacija Križanje

Selekcija

Ni najdena

Najdena

Najboljša
rešitev?

Ne

Da
Uspešno?

Da

Ne Uspešno?

Učenje 
&  ocenjevanje

Napaka

 Metrike

Podatkovni okvir

Grafikoni

Ocenjevanje
rezultatov

Ponovna oddaja naloge

Odpravljanje napak in
vrednotenje izhodov

Ročen poseg

Pridobivanje
podatkov

Da

Ne

Zaključitev? Najboljša
rešitev

Slika 2: Shematski pregled delovnega toka AutoDEHypO.
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Tabela 1: Rezultati po 10 epohah z uporabo modela ResNet18
na naboru podatkov MNIST (DE seed = 420).

Velikost
serije

Najboljša
točnost Pretečen čas

Porabljena
energija

16 0,2112 11 ur 42 min 00 s 19,30 MJ
32 0,2112 10 ur 28 min 00 s 17,31 MJ
64 0,2114 10 ur 20 min 38 s 17,41 MJ
128 0,2115 08 ur 53 min 48 s 15,69 MJ
256 0,2113 07 ur 10 min 03 s 11,88 MJ
512 0,2113 06 ur 43 min 59 s 11,58 MJ
1024 0,2112 08 ur 57 min 17 s 15,54 MJ

Tabela 2: Rezultati po 10 epohah z uporabo modela ResNet18
na naboru podatkov Fashion-MNIST (DE seed = 420).

Velikost
serije

Najboljša
točnost Pretečen čas

Porabljena
energija

16 0,1896 13 ur 40 min 20 s 22,79 MJ
32 0,1881 11 ur 11 min 20 s 18,55 MJ
64 0,192 10 ur 32 min 15 s 17,38 MJ
128 0,191 10 ur 47 min 36 s 18,30 MJ
256 0,1906 09 ur 30 min 43 s 16,20 MJ
512 0,1939 15 ur 03 min 21 s 24,87 MJ
1024 0,1922 11 ur 36 min 31 s 19,95 MJ

4 Rezultati
Za izvedbo poskusa smo uporabili superračunalnik HPC
Vega [5]. Uporabljena so bila računska vozlišča na par-
ticiji z GPE. Celotno particijo sestavlja 60 vozlišč, kjer
ima vsako vozlišče štiri NVIDIA Ampere 100 (A100)
GPE, dva AMD Rome 7H12 procesorja, 512 GB pomnil-
nika, dve HDR mezzanine omrežni kartici z dvema pri-
ključkoma in 1,92TB M.2 SSD disk. Na vozliščih je
nameščen operacijski sistem Red Hat Enterprise Linux
8.10, NVIDIA gonilniki verzije 565.57.01, CUDA ver-
zije 12.7 ter razporejevalnik poslov Slurm 24.11.4 [5].

Rezultati enega zagona uglaševanja različnih vidikov
hiperparametrov [37], kjer smo preliminarno opazovali
število epoh in iteracij, uteži, hitrost učenja (LR), veli-
kost serije in DE [36] kot optimizator, so predstavljeni
znotraj tabel 1 in 2. Predstavljeni rezultati eksperimenta
temeljijo na podlagi konvolucijske nevronske mreže Re-
sNet in uporabljen ML model z 18 plastmi [12]. Glede
na preliminarne opazovalne rezultate prilagoditve veliko-
sti serije bistveno ne vplivajo na točnost izbranega ML
modela, saj so točnosti precej podobne. Velikost serije
lahko vpliva na izvajalni čas in porabo energije, kot na
primer za nabor podatkov MNIST (tabela 1), kjer je opti-
malna velikost serije 512. Čas izvajanja je tako krajši tudi
za približno 5 ur in porabi za 7,72 MJ manj energije (ta-
bela 1). Vsekakor pa obstajajo izjeme, kjer velikost serije
512 na naboru podatkov Fashion-MNIST (tabela 2) lahko
porabi več energije v primerjavi z drugimi zaključenimi
nalogami, kot na primer za velikosti serij 64, 128, 256 in
1024. Tako zaznamo, da je za nabor podatkov Fashion-
MNIST (tabela 2) optimalna velikost serije 256, kjer po-
rabi do približno 1 uro manj izvajalnega časa pri tem pa
porabi približno 1 MJ manj energije.

5 Zaključek in prihodnje delo
V prispevku je predstavljen nov primer izkoriščanja de-
lovnega toka AutoDEHypO za optimizacijo hiperpara-

metrov, temelječ na diferencialni evoluciji. Za izvedbo
zasnovanega eksperimenta smo uporabili predhodno nau-
čene modele strojnega učenja, kjer smo izvedli dodatno
uglaševanje modela pri uporabih zbirkah MNIST in
Fashion-MNIST. Rezultati kažejo, da delovni tok v kon-
tekstu HPC lahko zagotavlja ugoden kompromis in rav-
novesje med natančnostjo in energetsko učinkovitostjo.
Dodatno omogoča prilagodljivost in učinkovit pristop k
optimizaciji hiperparametrov, kjer ponuja prednosti kot
tudi omejitve izrabe računskih virov, zaznavanje strojnih
okvar v HPC okolju in granularnost ob merjenju zadanih
metrik. Spremljanje in poročanje o porabljeni energiji, ter
izkoriščanje razpoložljivih mehanizmov za zmanjšanje po-
rabe energije se je izkazalo za izvedljivo.

V prihodnje bo delo usmerjeno na izboljšanje prila-
godljivosti algoritma širšemu naboru modelov strojnega
učenja, dodatnih naborov podatkov, preizkus drugih ar-
hitektur ter sistemov in vključevanje dodatnih naprednih
tehnik, kot je večkriterijska optimizacija. Izkoriščanje to-
vrstnih infrastruktur bo v prihodnje ključnega pomena.
Pri tem bi tudi izpostavili omejitve, ki so vezane na do-
deljene računske vire znotraj posameznega projekta.
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