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Harnessing High-Performance Computing
for Distributed Machine Learning
Hyperparameter Optimization Using
Differential Evolution

From a scientific point of view, we are interested in how
efficiently optimization techniques perform when we take
into account their performance and consumption of com-
puting resources, with an emphasis on energy-efficiency
and sustainability in Artificial Intelligence (Al). There-
fore, we have examined Differential Evolution (DE) op-
timization strategies in the context of machine learning
(ML) of previously trained models and how they affect in-
dividual observation metrics when applied to real-world
workflows within a high-performance computing (HPC)
environment. Here, we want to highlight the importance
of optimization and the efficiency of the selection of indi-
vidual ML models and DE, taking into account the results
obtained from the Slurm job scheduler. The experiment
was conducted using the largest national petascale HPC.

1 Uvod

Novi pristopi, hitra rast in delovne obremenitve umetne
inteligence, kjer kompleksnost naras¢a, zahteva precej-
$njo koli¢ino racunalniskih virov, kar vodi v konvergenco
od petaskalirne do po-eksaskalirne racunalniSke dobe [1].
Ker so podatkovni centri med najve¢jimi porabniki in iz-
pusti ogljika, se je pri tem ustvarila velika vrzel v priza-
devanjih za prehod na bolj trajnostne pristope in strate-
gije [2]. Prehod vodi do omejitev, kjer je potrebno uve-
sti u€inkovite in temeljne mehanizme za trajnost [3, 4].
Zaradi razli¢nih arhitektur in mehanizmov med sistemi
se za zmanjSanje porabe racunske moci lahko uporabijo
ucinkovitejsi pristopi s ciljem zmanj$anja globalnega od-
tisa [3]. Zelo pomembno vlogo imajo tudi uporabniki, ki
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pridejo z razli€nim strokovnim znanjem iz razli¢nih po-
drogij [5,6]. Ceprav so na voljo tudi najbolje prakse in
smernice, ki pomagajo pri u€inkoviti in optimalni upo-
rabi sistemov, uporabniki pogosto nimajo predhodnega
znanja o HPC in morda ne dajejo prednosti ucinkoviti
uporabi in optimalnemu delovanju svojih delovnih obre-
menitev [7, 8]. Prav tako ni enotnega sistema za spre-
mljanje in upravljanje porabe energije, saj se uporabljene
tehnologije razlikujejo glede na posamezen sistem [7].
Dodatno so lahko metode, kot na primer rocno iskanje,
nakljucno iskanje, Bayesova optimizacija, lahko ¢asovno
in racunsko potratne, Se posebej pri delu s kompleksnimi
modeli in ve¢jimi nabori podatkov [9-11].

V prispevku predstavljamo optimizacijo hiperparame-
trov konvolucijske nevronske mreZe ResNetl8 [12] na
naboru podatkov MNIST in Fashion-MNIST, s pomocjo
nadgradnje osnovnega populacijskega algoritma diferen-
cialne evolucije (DE) [13]. Za nadzorovano strojno ucenje
in izvedbo zasnovanega eksperimenta smo uporabili de-
lovni tok in predhodno naucene modele strojnega ucenja,
kjer smo izvedli dodatno uglasevanje modela na doda-
tnih podatkovnih zbirkah [14]. Dodatno smo uporabili
delovni tok AutoDEHypO, ki je podrobneje predstavljen
v Clanku [14]. S takSno nastavitvijo smo lahko upora-
bili uglaSevanje razli¢nih vidikov hiperparametrov. Tako
predstavlja optimizacija hiperparametrov pomemben vi-
dik strojnega ucenja, kjer lahko iskanje optimalnega na-
bora parametrov izbolj$a delovanje delovnih obremenitev
in modela [14]. Prvotno je bil delovni tok ovrednoten z
uporabo predhodno naucenih modelov strojnega ucenja,
kot so ResNetl8, DenseNet121, ConvNextSmall in
VGG11, ob Kklasifikaciji slik z ve¢ oznakami na naboru
podatkov zbirke CIFAR 10 in 100 [14, 15]. Delovni tok
smo nadgradili in vkljucili dva dodatna nabora podat-
kov [16, 17]. Metoda nam omogoca izkoriscanje DE za
ucinkovito preiskovanje iskalnega prostora in ponuja
reSitev za optimizacijo hiperparametrov modelov stroj-
nega ucenja [14]. Eksperiment smo izvedli z uporabo
superracunalnika HPC Vega [5], kjer smo na izbrani in-
frastrukturi izkoristili vzporedno racunanje na graficnih
procesorskih enotah (GPE), kar pospesi preiskovanje pro-
stora hiperparametrov in skrajSa skupni ¢as do resitve [14].

Naslednji razdelki tega prispevka so organizirani na
naslednji nacin. Razdelek 2 ponuja pregled sorodnih del
in metod. Razdelek 3 opisuje metodologijo. Razdelek 4



ponuja eksperimentalne rezultate. Razdelek 5 predstavlja
zakljucek in prihodnje delo.

2 Sorodna dela in metode

Optimizacija je zaporedje korakov, ki izboljsajo kakovost
zadanega problema [18]. Probleme razli¢nih razseZznosti
in oblik najdemo v razli¢nih domenabh, kot je ¢as, dimen-
zija ali meritev, kjer so lahko problemi predstavljeni kot
kriterijski vektorji glede na ovrednotenje reSitev v samem
prostoru spremenljivk [18]. Dodatno je smiselno naslo-
viti kriterije, metode z uteZmi in omejitve samih opti-
mizacij, kot so metode z ohranjanjem dopustnih resitev,
uporaba kazenskih funkcij, s strogim razlikovanjem med
dopustnostjo in nedopustnostjo vektorjev [18]. Optimi-
zacijski algoritmi se uporabljajo v strojnem ucenju za iz-
boljSanje rezultatov, zlasti izgub v izbranem prostoru [18].
S pomocjo izbrane metode lahko optimiziramo hiperpa-
rametre Se pred fazo u€enja, kjer hiperparametri predsta-
vljajo konfiguracijske spremenljivke ML modela [9, 10].

2.1 Superracunalnisko okolje in programje

Superracunalnik je skupek ve¢jega nabora med seboj po-
vezanih vozliS¢, ki zagotavljajo visoke zmogljivosti, ka-
tere merimo v Stevilu operacij s plavajoCo vejico na se-
kundo (FLOPS) in porabo energije v dzulih (J) [5]. Upo-
rabnost in izkori$¢enost takSne infrastrukture narasca in
predstavlja hrbtenico inovacij v slovenski in evropski aka-
demski raziskovalni skupnosti kot tudi v industriji in
manjsSih podjetjih [6]. HPC tako omogoca pohitritev in
skrajSanje trajanja posameznih raziskav na razli¢nih znan-
stvenih podrocjih vklju¢no s strojnim ucenjem [5,6]. Za
zagotavljanje potreb programske opreme v raziskovalni
skupnosti in §irSe je znotraj uporabniskega okolja na voljo
nabor optimiziranega in namesc¢enega programja, vklju¢no
s sistemskim programjem, vsebniki, knjiznicami in pre-
vajalniki programske kode, ki so med drugim porazde-
ljeni in dostopni uporabnikom na slovenskih grucah preko
oddaljenega datotecnega sistema CernVM-ES [5, 6]. Ob
upostevanju priporocil si manjkajoce razliCice programja
lahko uporabniki pripravijo sami [6,19]. Uporabnikom je
prav tako na voljo vecnivojska uporabniska podpora [5].
Za evropski deleZ je prav tako na voljo napredna aplika-
cijska podpora, ki je zagotovljena znotraj projekta EPI-
CURE [20]. Naloge lahko uporabniki oddajo in upra-
vljajo preko odprtokodne programske opreme Slurm [21].
Slurm je namenjen upravljanju in razporejanju z

racunalnisSkimi viri [21]. Programska oprema skrbi za
okolje, pripravo nalog, ¢akalno vrsto, prioritete, ki vpli-
vajo kdaj se bodo naloge izvedle v povezavi z linuksom
(cgroups), poskrbi za omejitve pred, med in po izvaja-
nju, skrbi za uporabniske racune ter njihovo porabo, nad-
zoruje izvajanje, vse dejavnosti posameznih izvajanj pa
shrani v podatkovno bazo [21]. Omogoca prenosljivost
glede na arhitekturo gruce, visok nivo odpornosti na na-
pake, zagotavljanje varnosti vklju¢no s hitro odpravo ran-
ljivosti in pomankljivosti, dostopna je izvorna koda, ki
omogoca hitro prilagodljivost in visok nivo skalabilnosti,
preprostost glede na konfiguracijo in preprostost uporabe
za koncne uporabnike, kot tudi administratorje takSnih

312

sistemov, ki imajo na voljo dodatne funkcionalnosti [6,
21]. Pri tem pa Slovensko nacionalno superracunalniSko
omrezZje (SLING) uporabnikom zagotavlja poenoteno pro-
gramsko okolje znotraj gru¢ [5, 6]. Posamezni projekti
imajo glede na tip projekta, kot na primer veliki, regu-
larni, razvojni ali testni projekt, dodeljeno ¢asovno ome-
jitev trajanja projekta in kvoto racunskih virov, ki jo lahko
porabijo znotraj oddobrene alokacije [5]. Tako morajo
uporabnki poskrbeti za ucinkovito izrabo dodeljenih
racunske moci, kjer bi morali prav tako posvetiti pozor-
nost energijski ucikovitosti [8,22]. Uporabniki tako od-
dajo svoje naloge na razli¢ne nacine, bodisi preko ukaza
srun ali predhodno pripravljene ter prenosljive skripte
bash (SBATCH), ki zagotovi ponovljivost in avtomati-
zacijo ali interaktivno s pomocjo ukaza salloc, kjer se
ustvari rezervacija na posameznem vozlis¢u vkljucno z
interaktivno sejo [5,6,21].

2.2 Tocka preverjanja in ponovni zagon

Tocka preverjanja in ponovni zagon predstavljata meha-
nizem, za shranjevanje delovnih tokov [14]. Shranjene
tocke je mogoce pozneje znova zagnati, kar pomeni krajsi
¢as izvajanja, manjSo porabo energije in moznost odpra-
vljanja napak, ki se lahko pojavijo med izvajanjem de-
lovne obremenitve [14]. TakSen mehanizem zagotavlja
toleranco napak in odpornost na razline okvare, kot je
na primer odpoved strojne opreme, napake na omreZju ali
znotraj programske opreme [14], za dosego zdruZljivosti
raznolikega programja glede na izbrano arhitekturo, kot
je na primer CPE in GPE, kot tudi vsebniska okolja, kjer
je potrebna prilagoditev programske kode. [14].

2.3 Diferencialna evolucija

Algoritem diferencialne evolucije (DE) je del populacij-
skih algoritmov in sta ga leta 1995 predstavila Storn in
Price [23]. DE se uporablja na podro¢ju optimizacije
numeri¢nih funkcij in aplikacij znotraj razli¢nih domen-
skih podrocij [23]. Osnovni DE ima glavno evolucij-
sko zanko, skozi katero se s pomocjo kljuénih in osnov-
nih operatorjev, kot so inicializacija, mutacija, kriZanje in
selekcija, po inicializaciji kon¢ni rezultat postopoma iz-
boljSuje s ponavljanjem operatorjev, dokler se ne najde
najboljsa vrednost [23]. Na samem podrocju DE so tudi
nenehne izboljSave, kot na primer Strukturirana diferen-
cialna evolucija za zmanjSanje velikosti populacije z vec¢
strategijami mutacij (SPSRDEMMS), ki zagotavljajo sta-
tisticno boljSe rezultate kot podobni algoritmi, saj je zelo
prilagodljiv [24]. Algoritem jDE uvaja raz§iritev osnov-
nega DE, kjer je dodan mehanizem, ki omogoca dina-
miko, boljSe vrednosti prilagaja velikost populacijskega
vektorja z iteracijami [25]. Adaptivno diferencialno evo-
lucijo na podlagi zgodovine uspeha (SHADE) sta razvila
Tanabe in Fukuaaga [26]. Algoritem SHADE se prilagaja
glede na krmilne parametre, skaliranje (F) in kriZanje

(CR) [26] in razSiritve in optimizacija oziroma natancna
nastavitev osnovnega algoritma so prispevale k uspesnim
rezultatom v naslednjih letih, zato velja za u¢inkovit algo-
ritem [26]. Dodan je bil mehanizem za linearno

zmanjSevanje populacije (LPSR) [27]. Obstajalo tudi iz-
peljani algoritmi, ki so v naslednjih letih prav tako zma-



gali na tekmovanju [26,28]. Algoritem je prekosil druge
algoritme tudi v resni¢nem okolju, kjer sta bili ocenjeni
zanesljivost in uéinkovitost uporabe DE v oceanskih mi-
sijah in nacrtovanju podvodnih poti (UGPP) avtonomnih
podvodnih vozil (AUV) [29]. Optimizacijski algoritem
na razdalji temeljece prilagajanje krmilnih parametrov za
diferencialno evolucijo, temeljeco na uspehu (DISH) je
razSiritev prejSnjega algoritma L-SHADE, ki vkljucuje
mehanizma za spreminjanje same velikosti populacije [18,
26]. Nadgradnja predhodno omenjenega algoritma DISH
je Se DISHyv, kjer gre za podoben pristop kot prejs$nji algo-
ritem DISH, vendar imamo prenosljivo funkcijo z binar-
nimi parametri, kar posledi¢no doprinese najbol;jsi vektor
za velikost danega problem (D) [18,30].

2.4 Zelene izboljsave na podrocju strojnega ucenja

Napredek in razvoj na podrocju avtomatskega strojnega
ucenja kaZeta na potreben prispevek strategij in koncep-
tov zelene umetne inteligence (UI) v povezavi z energij-
sko ucinkovitostjo [2,31]. Rdeca UL, ki je osredotoena
na konvencionalne pristope ponovnega uc¢enja modelov
strojnega ucenja in maksimiranje tocnosti [2]. Kot rezul-
tat pa naraste uporaba racunskih virov, pri tem pa se za-
nemarja energijska ucinkovitost [2]. IzboljSave in dokaz
koncepta, ki temelji na knjiznici Scikit-learn in primer-
java uporabljenih in potencialno primernih algoritmov s

poudarkom na zeleni Ul je predstavljena znotraj ¢lanka [2].

Geissler in sodelavci so predstavili nov ozave$€en pri-
stop k optimizaciji hiperparametrov, ki temelji na zgo-
dnji zavrnitvi neucinkovitih konfiguracij hiperparametrov
za prihranek Casa ucenja strojnega ucenja in porabe vi-
rov [32]. Evolucijski algoritmi so bili uporabljeni kot op-
timizatorji kot dodatek k AutoML, kot je izboljSan opti-
mizacijski okvir z uporabo evolucijskih algoritmov [33].
Vakhnin in sodelavci so predstavili vecciljni hibridni evo-
lucijsko zasnovan okvir za natan¢no napovedovanje po-
rabe energije [34]. Gomes in sodelavci so predstavili pri-
merjalne Studije, kjer je uporaba DE podajala boljSe re-
zultate kot drugi algoritmi [35]. Prilagojenim $tudijam
glede na specificna podro¢ja manjka integracija in upo-
raba HPC okolja (Slurm) [31]. Kljub zmogljivostim no-
ben od podobnih orodij ne zagotavlja podpore za ener-
getsko ucinkovitost, saj se za merjenje porabe energije
uporabijo dodatna orodja [14,31].

2.5 Nabor podatkov

MNIST (Modified National Institute of Standards and Te-
chnology) je javna zbirka podatkov, ki vkljucuje ro¢ne
zapise Stevil [16]. Fashion-MNIST je javna zbirka zbra-
nih sivinskih slik, ki prikazujejo razli¢ne kose oblacil,
razdeljene v 10 razredov [17]. Zbirki MNIST in Fashion-
MNIST vsebujeta vsaka po 60.000 slik (28 x 28) za
strojno ucenje in 10.000 slik za preizkuSanje [16, 17].

3 Metodologija

Za nadzorovano strojno ucenje in izvedbo zasnovanega
eksperimenta smo uporabili predhodno naucene modele
strojnega ucenja, kjer smo izvedli dodatno uglaSevanje
modela na dodatnih podatkovnih zbirkah in nov primer
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izkoriS¢anja delovnega tokova AutoDEHypO. V tem no-
vem primeru smo delovni tok nadgradili, uporabili krite-
rijsko funkcijo meritve napake za osnovno klasifikacijo
in vkljucili dodatna nabora podatkov MNIST in Fashion-
MNIST [16, 17]. Porabo racunskih virov znotraj podat-
kovne zbirke belezi Slurm [21]. S pomocjo programja se
beleZi poraba Casa, pomnilnika, virov, diskovnih kapaci-
tet, porabljene energije, generi¢nih virov in Stevilnih dru-
gih. Slurm te podatke belezi za posamezne uporabniske
racune, projekte in tudi posamezne naloge, kot je pred-
stavljeno na sliki 1. Uporabniki lahko pridobijo podatke
s pomocjo ukaza sacct. Primer takSnega ukaza, kjer
< jobid > zamenjamo z dejanskim identifikatorjem na-
loge. Dodatno je mozno prilagoditi parametre znotraj sti-
kala format, kjer izberemo potrebne informacije.

sacct —u $USER -7 <jobid> —-format=\
JobID, ConsumedEnergy, CPUTime, elapsed, \
TresUsageOutAve,AllocTRES, \
partition --parsable2 --delimiter=";"

Oddaja nalog preko Slurm

Slika 1: Osnovni delovni tok oddaje opravil preko Slurm.

Izbrali smo nedavno vzporedno implementacijo algo-
ritma DE [36], ki vzporedno izvaja operacije s populacijo
znotraj samega algoritma. Uporabljeno okolje prav tako
vkljucuje vsebnik Singularity PyTorch, katerega delovni
tok je predstavljen na sliki 2.

AutoDEHypO

Diferenciaina evolucija

Inicilizacia —» Mutacia — Kiizanje

|odpravijanje napak in|
vrednotenje izhodov.

NNNNNNN

Slika 2: Shematski pregled delovnega toka AutoDEHypO.



Tabela 1: Rezultati po 10 epohah z uporabo modela ResNet18
na naboru podatkov MNIST (DE seed = 420).

Velikost | Najboljsa . Porabljena
.. o Pretecen cas ..

serije toénost energija

16 0,2112 11 ur 42 min 00 s 19,30 MJ
32 0,2112 10 ur 28 min 00 s 17,31 MJ
64 0,2114 10 ur 20 min 38 s 17,41 MJ
128 0,2115 08 ur 53 min 48 s 15,69 MJ
256 0,2113 07 ur 10 min 03 s 11,88 MJ
512 0,2113 06 ur 43 min 59s | 11,58 MJ
1024 0,2112 08 ur 57 min 17 s 15,54 MJ

Tabela 2: Rezultati po 10 epohah z uporabo modela ResNet18

na naboru podatkov Fashion-MNIST (DE seed = 420).

Velikost | Najboljsa L. Porabljena
serije tocnost Pretecen Cas energija

16 0,1896 13 ur 40 min 20 s 22,79 MJ
32 0,1881 11ur 11 min 20 s 18,55 MJ
64 0,192 10 ur 32 min 15 s 17,38 MJ
128 0,191 10 ur 47 min 36 s 18,30 MJ
256 0,1906 09ur30 min43s | 16,20 MJ
512 0,1939 15ur 03 min 21 s 24,87 MJ
1024 0,1922 11 ur 36 min 31 s 19,95 MJ

4 Rezultati

Za izvedbo poskusa smo uporabili superracunalnik HPC
Vega [5]. Uporabljena so bila racunska vozliS¢a na par-
ticiji z GPE. Celotno particijo sestavlja 60 vozlis¢, kjer
ima vsako vozlisce §tiri NVIDIA Ampere 100 (A100)
GPE, dva AMD Rome 7H12 procesorja, 512 GB pomnil-
nika, dve HDR mezzanine omrezni kartici z dvema pri-
klju¢koma in 1,92TB M.2 SSD disk. Na vozliscih je
namescen operacijski sistem Red Hat Enterprise Linux
8.10, NVIDIA gonilniki verzije 565.57.01, CUDA ver-
zije 12.7 ter razporejevalnik poslov Slurm 24.11.4 [5].

Rezultati enega zagona uglasevanja razli¢nih vidikov
hiperparametrov [37], kjer smo preliminarno opazovali
Stevilo epoh in iteracij, uteZi, hitrost ucenja (LR), veli-
kost serije in DE [36] kot optimizator, so predstavljeni
znotraj tabel 1 in 2. Predstavljeni rezultati eksperimenta
temeljijo na podlagi konvolucijske nevronske mreZe Re-
sNet in uporabljen ML model z 18 plastmi [12]. Glede
na preliminarne opazovalne rezultate prilagoditve veliko-
sti serije bistveno ne vplivajo na tocnost izbranega ML
modela, saj so tonosti precej podobne. Velikost serije
lahko vpliva na izvajalni ¢as in porabo energije, kot na
primer za nabor podatkov MNIST (tabela 1), kjer je opti-
malna velikost serije 512. Cas izvajanja je tako krajsi tudi
za priblizno 5 ur in porabi za 7,72 MJ manj energije (ta-
bela 1). Vsekakor pa obstajajo izjeme, kjer velikost serije
512 na naboru podatkov Fashion-MNIST (tabela 2) lahko
porabi vec energije v primerjavi z drugimi zaklju¢enimi
nalogami, kot na primer za velikosti serij 64, 128, 256 in
1024. Tako zaznamo, da je za nabor podatkov Fashion-
MNIST (tabela 2) optimalna velikost serije 256, kjer po-
rabi do priblizno 1 uro manj izvajalnega ¢asa pri tem pa
porabi priblizno 1 MJ manj energije.

5 Zakljucek in prihodnje delo

V prispevku je predstavljen nov primer izkoriS¢anja de-
lovnega toka AutoDEHypO za optimizacijo hiperpara-
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metrov, temelje¢ na diferencialni evoluciji. Za izvedbo
zasnovanega eksperimenta smo uporabili predhodno nau-
¢ene modele strojnega ucenja, kjer smo izvedli dodatno
uglasevanje modela pri uporabih zbirkah MNIST in
Fashion-MNIST. Rezultati kaZejo, da delovni tok v kon-
tekstu HPC lahko zagotavlja ugoden kompromis in rav-
novesje med natan¢nostjo in energetsko ucinkovitostjo.
Dodatno omogoca prilagodljivost in u¢inkovit pristop k
optimizaciji hiperparametrov, kjer ponuja prednosti kot
tudi omejitve izrabe racunskih virov, zaznavanje strojnih
okvar v HPC okolju in granularnost ob merjenju zadanih
metrik. Spremljanje in porocanje o porabljeni energiji, ter
izkori$¢anje razpoloZljivih mehanizmov za zmanjSanje po-
rabe energije se je izkazalo za izvedljivo.

V prihodnje bo delo usmerjeno na izboljSanje prila-
godljivosti algoritma SirSemu naboru modelov strojnega
ucenja, dodatnih naborov podatkov, preizkus drugih ar-
hitektur ter sistemov in vklju€evanje dodatnih naprednih
tehnik, kot je veckriterijska optimizacija. Izkori¢anje to-
vrstnih infrastruktur bo v prihodnje klju¢nega pomena.
Pri tem bi tudi izpostavili omejitve, ki so vezane na do-
deljene racunske vire znotraj posameznega projekta.
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