
ERK'2025, Portorož, 370-373 370

Pattern generation with neural cellular automata

Matic Pristavnik Vrešnjak, Žiga Lesar, Ciril Bohak
University of Ljubljana, Faculty of Computer and Information Science

E-mail: mp6760@student.uni-lj.si, {ziga.lesar, ciril.bohak}@fri.uni-lj.si

Abstract
Neural cellular automata (NCA) have been shown to per-
form well on a variety of tasks that require them to form
self-organized structures. Over the years, they have been
applied to various tasks such as 3D mesh texture wrapping,
procedural generation of game levels and buildings, and
more. In this work, we extend neural cellular automata to
generate height maps that could potentially be used for
3D terrain generation.

1 Introduction
NCA are a class of models that combine local rule-based
computation with the learning capabilities of neural net-
works (NNs). They have been successfully applied to
a variety of tasks, including texture synthesis, dynamic
image generation, mesh-based modeling, and procedural
content creation. A key advantage of NCAs is their ability
to form complex, self-organizing patterns through sim-
ple local interactions, making them especially suitable for
tasks involving spatial coherence and robustness.

In this work, we explore the use of NCA for generating
height maps that resemble those produced by traditional
erosion algorithms, commonly used in terrain generation.
Our approach builds on existing NCA architectures by
introducing noise-based initialization, global positional
encoding, and multi-scale filter kernels to enhance pattern
complexity and inter-cell communication. We also com-
pare our models to a baseline erosion method in terms
of visual quality, generalization, and computational per-
formance, and discuss their potential use for seamless
chunk-based map generation.

The source code is publicly available on GitHub,1

along with a live demo.2

2 Related Work
Mordvintsev et al. [4] introduced neural cellular automata,
simulating living cells that communicate via chemical
signals using 2D convolutions and Sobel filters. They
apply a 1 × 1 convolution without ReLU, use masking
to isolate living cells, and employ pooling strategies to
improve stability and regeneration over extended time
steps. Image orientation can be controlled by rotating the

1https://github.com/MaticVP/NCA-heightmaps
2https://funtimes.streamlit.app/

Sobel filters, and they demonstrate the model’s ability to
repair damaged regions. In a follow-up [3], the authors
applied NCA to texture generation, arguing that natural
textures emerge from particle interactions similar to partial
differential equationss (PDEs), which can be learned by
simple networks. Their approach is fast to train, highly
parallelizable, and robust to noise, although it sometimes
produces repetitive or nonsensical patterns.

Pajouheshgar et al. [7] extended NCA to dynamic
images, improving inter-cell communication with multi-
scale perceptrons and incorporating optical flow to model
motion. Their system allows post-generation editing of
automata behavior, including speed and direction, though
it struggles with unrealistic motion paths such as curvilin-
ear trajectories for linear patterns. In a later work [5], the
authors adapted NCA to 3D meshes by replacing 2D con-
volutions with graph NNs and using spherical harmonics
to guide the automaton, achieving higher-quality textures
and supporting multimodal inputs like text, motion fields,
and images. Their system can blend two textures on the
same object and interpolate between them. They also
found that using uniform noise as the seed improves gen-
eralization and resolution scalability, unlike non-uniform
noise which leads to overfitting [6].

Finally, Earle et al. [2] applied NCA to 2D level gener-
ation, showing that despite only local perception, automata
can propagate information globally, outperform GANs in
quality, and explore level space more effectively, though
at the cost of diversity.

3 Our Approach
3.1 Basic model
First, we implemented the model by Mordvintsev et al. [3].
We apply Sobel filters and a Laplace filter. After applying
all the filters, their results are concatenated channel-wise
and fed into the NN. The architecture of the NN consists of
a dense layer followed by a ReLU activation function, and
then another dense layer without any activation function.
The result of the NN is then added to the previous output.
The architecture of the NN is presented in [3, Figure 1].

To maintain stability during training, we also used
the pooling method described in the original paper. This
involves occasionally using an older image to update the
model instead of always using the most recent one. It
is worth noting that this basic method behaves similarly

https://github.com/MaticVP/NCA-heightmaps
https://funtimes.streamlit.app/

371

to the Euler integrator, while more advanced approaches
could use Runge-Kutta methods. However, in our ex-
periments, this mostly resulted in slower training times
without any visible benefits or more diverse outputs.

3.2 Adding noise
Initializing the model with random noise can lead to better
results [6]. The noise model of the NCA remains largely
the same as the basic model, with the exception of the
initial image. In this case, a certain amount of noise is
added to the original image. According to the original
paper, the required amount of noise varies from image to
image. Therefore, we experimented with various types and
levels of noise and primarily relied on visual inspection
to determine whether the results were satisfactory. The
amount of noise that we used for the final results was 0.20.

To test the above-described model, we used two types
of noise: Perlin noise [8] – commonly used for procedural
generation and Fractal Brownian Motion (FBM) [1] – a
type of fractal noise where multiple octaves of noise are
summed at different frequencies and amplitudes.

3.3 Adding global position awareness
This model was originally used to reconstruct anima-
tions [7], but we reworked it to function with static images.
It introduces several new adjustments to the architecture.
The first change is the use of multiple Sobel and Laplace
filters of different sizes. This should allow the automata
to learn information at different scales by enabling com-
munication with more distant cells. The results of these
filters are concatenated channel-wise.

Additionally, the authors used positional encoding to
help the automata gain a sense of “awareness” of their
location on the grid. The results of the positional encoding
are then concatenated along with the outputs of the Sobel
and Laplace filters and passed to the NN. The rest of the
network remains the same as in the basic model. The
architecture of the model is presented in [7, Figure 3].

3.4 Model training
3.4.1 Loss function
The loss function used to train the aforementioned mod-
els is the VGG16 [9] texture loss, which emphasizes the
preservation of texture and style by comparing feature
maps extracted from a pre-trained VGG16 network. For
supervision, the ground truth image is selected based on
the specific sample drawn from the pool of existing images.
This approach helps guide the model toward producing
realistic outputs and maintains consistency during train-
ing. As a result, it leads to more stable generations and
effectively prevents the outputs from mutating or growing
uncontrollably over time.

To further improve the controllability of the model’s
outputs and limit excessive growth, an additional term
called overflow loss is introduced:

Loverflow =
∑

|x− clamp(x,−1, 1)| , (1)

where x denotes the model’s output, and clamp(x,−1, 1)
restricts the value of x to the interval [−1, 1]. This loss

penalizes any values that exceed the valid output range.
The final loss function is then defined as:

Ltotal = Ltexture + Loverflow. (2)

Combining both losses encourages the model to generate
visually coherent textures while keeping the output within
a reasonable range.

3.4.2 Training loop
The model was trained using a variable number of steps
per epoch. This strategy is intended to help the model
generalize more effectively and produce more diverse out-
puts. In total, the training process spanned approximately
2,000 to 4,000 epochs. During each epoch, the model
performed between 64 and 96 training steps, depending
on the specific setup. This variation in training steps intro-
duces additional randomness and diversity, which can be
beneficial for texture synthesis and generalization.

3.4.3 Chunk map training
In an attempt to create continuous regions between differ-
ent patches or chunks, we trained a specific model tailored
for this purpose. The idea was inspired by the original
paper [3], where the authors demonstrated that if a certain
region of the image was corrupted during training, the
model was able to repair it by generating a new pattern
that blended seamlessly with the overall texture.

Following a similar approach, we modified the train-
ing regime so that the model would occasionally receive
cropped or partially masked images as input. The goal
was to encourage the model to learn how to naturally fill
in these missing regions. In theory, this should allow us to
extract a chunk from each texture and merge them into a
larger, coherent whole. However, in practice, this method
does not always yield desirable results and can still lead
to noticeable artifacts or discontinuities.

3.5 Erosion
Since it would not make much sense to simply mimic an
already fast noise sampling algorithm, we instead chose
to first generate noise textures and then apply an erosion
algorithm. The reason for selecting erosion is that, to
the best of our knowledge, CPU implementations of ero-
sion are inherently slow, and there are no widely available
CPU-based algorithms capable of running efficiently in
real time. Additionally, erosion methods often suffer from
the so-called “parameter hell”: tuning the algorithm’s pa-
rameters can be a tedious and time-consuming process.
Achieving desirable results typically requires multiple
iterations, each involving rerunning the already slow algo-
rithm just to evaluate the impact of parameter changes.

The erosion algorithm we used is relatively straight-
forward and primitive, especially when compared to more
complex CPU and GPU implementations. It operates by
performing multiple iterations over a procedurally gener-
ated noise-based terrain. In each iteration, we simulate
rainfall, calculate water flow direction using terrain gra-
dients, and estimate sediment transport based on slope,
water velocity, and capacity. Sediment is either deposited

372

Figure 1: Examples of 2D height map textures obtained
with each architecture.

Figure 2: Examples of 3D meshes obtained with each
architecture.

or eroded depending on local conditions, and both water
and sediment are displaced in the downhill direction. Ter-
rain is then smoothed using a simple slippage function.
Over time, this iterative process sculpts the terrain into
more natural forms, though the method remains basic in
terms of physical accuracy and performance optimization.

4 Results
4.1 Single image results
In Figure 1, we can observe that the NCA models are able
to generate outputs resembling the results achieved with
the erosion algorithm. For Perlin noise, both the Simple
NCA and the Noise NCA models produce results simi-
lar to those of the erosion algorithm. In the case of the
Global Map NCA, there are slight deviations not present
in the erosion algorithm. Most notably, some mountains
exhibit centipede-like patterns along their edges, which do
not appear in the other two architectures. It is also worth
mentioning that both the Simple NCA and Noise NCA
generate the most varied results among the three archi-
tectures, whereas the Global Map NCA tends to produce
maps that are more or less identical to the one shown in
this figure.

In the second row of Figure 1, when using FBM noise,
the results differ slightly from those of the erosion al-
gorithm. The erosion algorithm produces well-defined
fractal-like structures, whereas all the NCA architectures
yield centipede-like patterns. Other observations remain
consistent with the Perlin noise case.

For a better interpretation of the results, we can exam-
ine the height maps rendered as 3D meshes, as shown in
Figure 2. In the case of Perlin noise, we observe that the
erosion algorithm is able to produce significantly more
landmass compared to the NCA-based methods. Both

Figure 3: Examples of 2D height maps obtained with each
architecture.

the Simple NCA and Noise NCA generate meshes with
relatively small land areas that are predominantly moun-
tainous. The only NCA variant that produces results with
a reasonable amount of land is the Global Map NCA. This
is likely due to improved communication between cells,
allowing them to cluster more effectively. In contrast, the
cells in the other two models often fail to communicate,
resulting in sparse or fragmented structures.

Similar trends can be observed when using FBM noise.
Once again, the Simple NCA and Noise NCA produce less
land compared to the erosion algorithm. The centipede-
like patterns become even more apparent in the 3D meshes.
An interesting observation is that the Global Map NCA
yields results that are very similar to the erosion baseline,
showing variation in height but maintaining an overall
consistent shape. Notably, this shape tends to remain
stable regardless of how many times the model is rerun.
The same observation applies to the Global Map NCA
when using Perlin noise.

4.2 Chunk map results
In order to generate a map composed of chunks, it was
necessary to train a model capable of connecting separate
regions. From Figure 3, we can observe that NCAs using
Perlin noise are better suited for chunk-based generation.
Even models that were not explicitly trained for chunk
generation perform better at interpreting spatial hints com-
pared to the FBM-based models, which largely fail to
connect regions effectively.

While models trained specifically for chunk generation
tend to perform better than those that are not, they still
occasionally fail to connect regions. Notably, even when
the FBM model is trained with the objective of connecting
regions, it often performs worse than some of the other
FBM models not trained for this purpose. This suggests
that the structure of FBM noise may inherently hinder the
model’s ability to bridge disconnected regions.

4.3 Image resolution
In Figure 4, we can observe that as the resolution increases,
the texture begins to lose much of its detail. This occurs
because the cells are unable to communicate effectively
over large distances, resulting in patterns that gradually
deviate from those produced by the erosion algorithm.
The exception to this trend is the Global Map NCA model,
which manages to maintain a somewhat similar pattern
to the erosion-based output. This robustness is due to the

373

Figure 4: Examples of 2D Perlin height maps at different
resolutions for each model.

Figure 5: Examples of 2D FBM height maps at different
resolutions for each model.

use of global positional encoding and the application of
multiple Sobel filters at varying scales.

In Figure 4, we can observe that the results are largely
similar to those produced with Perlin noise. However, a
surprising detail is that the Global Map NCA begins to
deviate and break apart as the resolution increases. This is
unexpected, especially considering that, at least in the case
of FBM, this model typically produces nearly identical
results regardless of how many times it is rerun.

4.4 Speed comparisons
In Table 1, we observe that using NCA to approximate
the erosion algorithm results in significantly better perfor-
mance in terms of execution speed. However, it should
be noted that the erosion algorithm could be made to run
at nearly the same speed if we reduce the number of iter-
ations or tune the parameters for performance. Nonethe-
less, such modifications would lead to a noticeable drop in
output quality—often worse than what the NCA models
produce.

We can also observe that among the three NCA ar-
chitectures, the Global Map NCA is the slowest. This is
expected, considering that this architecture applies mul-
tiple Sobel and Laplace filters and computes positional
encoding before passing everything through the neural
network. These additional computations naturally lead to
increased inference time.

Table 1: Speed comparison at different resolutions (in
seconds).

Method 128×128 256×256 512×512 1024×1024

Simple NCA 0.38 1.53 6.09 45.84
Noise NCA 0.422 1.56 6.63 41.50
Global map NCA 1.58 5.47 21.16 101.24
Erosion algorithm 2.40 16.34 65.01 515.92

5 Conclusion
In this paper, we demonstrated that neural cellular au-
tomata can be used for faster generation of erosion height
maps. We also showed that the model tends to lose accu-
racy as the texture size increases, primarily because larger
automata make communication between cells more dif-
ficult. Additionally, we showed that applying positional
encoding can mitigate this problem, although not signifi-
cantly. We also briefly described how our approach could
be used for chunk-based map generation, but more work is
required to make it truly practical and capable of running
in real time.

Acknowledgment
This research was conducted as part of the basic research project
Cell visualization of unified microscopic data and procedurally
generated sub-cellular structures [project number J2-50221],
funded by the Slovenian Research and Innovation Agency (Javna
agencija za znanstvenoraziskovalno in inovacijsko dejavnost RS)
from the state budget.

References
[1] Ton Dieker. Simulation of fractional brownian motion, 2004. Mas-

ter’s Thesis, University of Twente.

[2] Sam Earle, Justin Snider, Matthew C. Fontaine, Stefanos Nikolaidis,
and Julian Togelius. Illuminating diverse neural cellular automata
for level generation. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’22, page 68–76, New York, NY,
USA, 2022. Association for Computing Machinery.

[3] Alexander Mordvintsev, Eyvind Niklasson, and Ettore Randazzo.
Texture generation with neural cellular automata. arXiv preprint
arXiv:2105.07299, 2021.

[4] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and
Michael Levin. Growing neural cellular automata. Distill, 5(2):e23,
2020.

[5] Ehsan Pajouheshgar, Yitao Xu, Alexander Mordvintsev, Eyvind
Niklasson, Tong Zhang, and Sabine Süsstrunk. Mesh neural cellular
automata. ACM Transactions on Graphics (TOG), 43(4):1–16, 2024.

[6] Ehsan Pajouheshgar, Yitao Xu, and Sabine Süsstrunk. Noisenca:
Noisy seed improves spatio-temporal continuity of neural cellular
automata. In ALIFE 2024: Proceedings of the 2024 Artificial Life
Conference. MIT Press, 2024.

[7] Ehsan Pajouheshgar, Yitao Xu, Tong Zhang, and Sabine Süsstrunk.
Dynca: Real-time dynamic texture synthesis using neural cellular
automata. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 20742–20751, 2023.

[8] Ken Perlin. An image synthesizer. In Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’85, page 287–296, New York, NY, USA, 1985.
Association for Computing Machinery.

[9] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

