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Shadow Prediction in Geospatial Data Using
a Deep U-Net Model

The following work presents a deep learning approach
for predicting shadow masks using terrain and position
of the Sun. By employing a U-Net architecture with an
auxiliary branch that encodes solar azimuth and
elevation angles, the model can account for illumination
geometry. The network is trained using a numerically
stable binary cross-entropy loss function, improving
convergence and prediction sharpness.  Training is
supported by a dataset comprised of approximately
200,000 terrain patches, derived from digital surface
models (DSMs) and labeled with shadow masks. The
dataset reflecting seasonal and diurnal variations in
urban settings is used to evaluate the proposed method.
Results indicate consistent performance across training
and  validation, showcasing  strong  predictive
capabilities and stable learning dynamics. The model
effectively captures shadow patterns shaped by complex
spatial and lighting conditions.

1 Uvod

Zaznavanje sencenih obmocij je pomembna naloga na
podrocju daljinskega zaznavanja, saj sence pogosto
zakrijejo podrobnosti povr§ja. To lahko vpliva na

natancnost algoritmov na podrocjih, kot so 3D
rekonstrukcije povrSja [1], prepoznave majhnih

povrsinskih objektov [2], analize rabe povr§ja [3],
ocenjevanje son¢nega obsevanja [4, 5, 6] in termalne
obremenitve [7]. Oblika in razporeditev senc je odvisna
od geometrijskih lastnosti povr§ja in trenutne pozicije
sonca na obzorju (viSinski in azimutni kot) [8, 5].
Kompleksnejsi relief povzroca bolj raznolike sence,
medtem ko se s premikanjem sonca skozi dan (in letne
Case) spreminja tudi njihova razporeditev na Zemljinem
povrsju. Kombinacija digitalnega modela povrsja (angl.
Digital Surface Model, DSM) in informacij o poziciji
Sonca omogofa razlicnim algoritmom natan¢no
dolocanje obmocij v senci [3].

Pri vi§jih locljivostih DSM-ja imajo algoritmi
simuliranja senc na podlagi metanja Zarkov visoko
racunsko zahtevnost izvajanja, kljub implementacijam
na grafi¢nih procesnih enotah (angl. Graphics Processing
Units, GPUs) [5]. Rezultat je 2.5 dimenzionalna maska
sencenja za podani DSM. Ena tak$nih metod je bila
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uporabljena v [6], kjer se je za potrebe pravilne ocenitve
solarnega potenciala moralo upoStevati prisotnost
sencenih obmocij. Te so prepoznali z uporabo algoritma
za sledenje Zarkom (angl. ray-casting). Predlagane so
bile tudi razli¢ne metode, ki ne slonijo na uporabi DSM
ali prostorskih informacij Sonca. Metoda, predlagana v
[9], vhodni posnetek povrsja najprej pretvori iz RGB v
HSV barvni prostor. Sledi izra¢un razmerja med H in V.
Za tem sledi sprememba intenzitete izraCunanih razmerij
s potencno funkcijo. V zadnjem koraku se s pragovno
funkcijo razlo¢i med sencenimi in nesencenimi obmocji.
Avtorji v [10] predlagajo metodo, ki velspektralni
posnetek Zemeljskega povrsja najprej pretvori v RGB
posnetek. Temu sledi izracun izboljSanega indeksa senc
(angl. Improved Shadow Index, ISI), ki izhaja iz
barvnega prostora YCbCr (pretvorjen iz posnetka RGB)
in dodatnega bliZnjega-infrardeCega sloja  (angl.
Near-Infrared, NIR). Medtem je posnetek RGB
segmentiran z Mean-Shift algoritmom grucenja.
Pridobljena segmentacijska maska je nato uporabljena za
regijsko rekonstrukcijo ISI. Sledi pragovna funkcija, ki
rekonstruiran ISI pretvori v masko sencenih obmocij.

V zadnjih letih so se predlagale razlicne metode
prepoznave sencenih obmoCij z uporabo globokega
ucenja, ki skuSajo biti hitrejSe od simulacijskih metod,
hkrati pa doseci visoko natan¢nost. V [11] so avtorji
predlagali metodo, ki v prvem koraku uporablja grucenje
nad znacilkami pikslov. V drugem koraku se uporabi
algoritem za zdruzevanje znaCilk z upoStevanjem
kontekstnih informacij. Te so namenjene za kasnejSo
boljSo usmeritev modela v prepoznavo sencenih obmocij
ob uporabi pozornosti znotraj predlagane arhitekture
globoke nevronske mreZe. Nenadzorovano ogrodje za
prepoznavo sencenih obmocij, predlagano v [12],
uporablja modul za generiranje psevdo oznak (angl.
pseudo label generation, IPG) prisotnosti senc, modul za
postopno ucenje (angl. curriculum learning, CL) in
modul za samostojno ucenje (angl. self-training, ST).
Modula CL in ST sta naucena razli¢nih oblik senc in
skuSata izboljsati kakovost generiranih psevdo oznak
modula IPG. Zgolj ta je po koncanem ucenju uporabljen
za prepoznavo senc¢enih obmocij nad novimi podatki.

V ¢lanku predlagamo novo metodo za prepoznavo
sencenih obmocij z uporabo globoke arhitekture U-Net
[13], ki temelji na kombinaciji DSM, izracunanih



geometrijskih znacilnostih povr§ja ter pozicije sonca.
Novost metode je v uporabi trokanalnega vhodnega
tenzorja, kar omogoca bogatejso reprezentacijo vhodnih
podatkov in natancnej$o prostorsko lokalizacijo senc, saj
model poleg visin uporablja tudi naklon in orientacijo,
zato lazje sklepa o osvetlitvi glede na poloZaj Sonca in
natan¢neje napove sence. Razvit model zagotavlja hitro
sklepanje in je tudi hitrejSi od klasi¢nega simulacijskega
pristopa na podlagi metanja Zarkov, hkrati pa ohranja
visoko natancnost.

V naslednjem poglavju je predstavljena predlagana
metoda. V tretjem poglavju predstavimo rezultate
eksperimentov in klju¢ne ugotovitve, v Cetrtem pa
zaklju¢imo Clanek.

2 Metodologija

Na sliki 1 so prikazani vsi koraki predlaganega
metodoloskega poteka, ki zajemajo pripravo vhodnih
podatkov, oblikovanje podatkovne zbirke in pripravo
nalagalnika, implementacijo arhitekture U-Net, ucenje
modela ter kon¢no vrednotenje rezultatov.

podatkoxna AR Ugenje Vrednotenje
zbirka arhitektura ! J

Preobdelava
podatkov

Slika 1: Delovni tok modela U-Net za napoved sencenja.

2.1 Predobdelava podatkov

Za ucenje modela uporabimo vecslojne podatke, ki kot
celota omogocajo napovedovanje sen¢nih obmocij na
povrsju. Osnovni sloj predstavlja DSM, definiran kot G,
ki vsebuje podatke o nadmorski visini. G je predstavljen
kot raster velikosti G, X Gp (tj. Sirina in viSina)
enakorasteznih celic doloCene prostorske locljivosti
Gres (npr. Gres = 1 pri 1 m Sirine celice). V fazi
predobdelave ustvarimo dodatna sloja naklona [ in
orientacije y povr§ja za vsako celico v GG, na podlagi
izraCuna gradienta:
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kjer sta = in y prostorski koordinati izbrane celice [4].
Vkljuceni so tudi podatki o legi Sonca za vsako uro v
letu, podani v obliki son¢nih kotov (viSina in azimut),
katere vrednosti so izracunane na podlagi algoritma SPA
(angl. Solar Position Algorithm, SPA ) [8]. Ti podatki so
kljuni za simulacijo osvetlitve povrSja v razlicnih
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obdobjih leta. Kot ciljne vrednosti se uporabljajo
binarne maske sencenja, ki so bile pridobljene na
podlagi obstojecega dela avtorjev [5].

V fazi predobdelave so vhodni sloji zdruzeni v
enoten vhodni tenzor oblike [3, Gy, Gw], pri ¢emer
vsak izmed treh kanalov predstavlja en sloj prostorskih
podatkov. Vsi sloji so med seboj usklajeni glede na
prostorsko poravnavo in dimenzije. Celoten vhodni
prostor se nato razdeli na manjSe odseke dimenzij 256 x
256 pikslov. Vsakemu odseku se glede na Casovni Zig
pripne ustrezna sencna maska, ki prikazuje, kateri deli
povr§ja so v senci glede na trenutni poloZaj Sonca.
Celoten nabor podatkov je razdeljen na tri podmnoZice:
ucno, validacijsko in testno, in sicer v razmerju
60:20:20. Med vsako epoho ucenja se podatki nakljucno
premesSajo z namenom zmanjSanja tveganja za
prenaucenost.

2.2 Napovedni model globokega ucenja U-Net

U-Net predstavlja eno izmed najbolj uveljavljenih
arhitektur na podrocju semanticne segmentacije slik,
zlasti tam, kjer je potrebna visoka prostorska natan¢nost.
Prvotno je bil zasnovan za segmentacijo biomedicinskih
slik, [13] zaradi ucinkovitosti pri sofasnem zajemanju
globalnih vsebinskih vzorcev in lokalnih prostorskih
znacilnosti pa se je arhitektura U-Net uveljavila tudi na
podrocjih, kot so daljinsko zaznavanje, obdelava
satelitskih slik in prostorsko modeliranje v okviru
geografskih informacijskih sistemov [14].

Arhitektura U-Net, uporabljena pri predlagani
metodi, sprejme 3-kanalni vhodni tenzor, kjer vsak kanal
predstavlja sloj prostorskih podatkov povrS§ja. Ti skupaj
tvorijo vhodne informacije, na podlagi katerih model
predvidi sencne vzorce. Poleg prostorskih podatkov
arhitektura vkljucuje tudi pomoZni vhod z relativno
sfericno pozicijo Sonca.  Vrednosti se obdelajo in
vgradijo v globlje sloje mreZe, kar omogoca boljSo
prilagoditev napovedi osvetlitvenim pogojem. MreZa
ima simetri¢no zgradbo s padajo¢im delom (kodirnik) in
narascajo¢im delom (dekodirnik), ki sestavi izhodno
sliko. Kon¢ni rezultat je 1-kanalni izhod, ki za vsak
piksel poda verjetnost pripadnosti senci. Za binarno
klasifikacijo vrednosti pragovno razmejimo pri 0,5, pri
¢emer vrednost 1 predstavlja osvetljeno, vrednost O pa
senceno obmocje.

2.3 Postopek ucenja in izgubna funkcija

Postopek ucenja modela temelji na postopnem
prilagajanju utezi z metodo nadzorovanega ucenja, kjer
se model uci napovedovati binarne maske sencenja na
podlagi znanih vhodno-izhodnih parov. V fazi ucenja
poseben poudarek namenjamo izbiri in uporabi ustrezne
izgubne funkcije. Uporabili smo  binarno
navzkriZzno-entropijsko izgubno funkcijo (angl. binary
cross-entropy) [15]. Izguba se izracuna kot:

L(s,t) =log (1 + e*‘sl) +max(0,s) —s-t, (5

kjer s predstavlja napoved modela, ¢t € {0,1} pa ciljno
vrednost, ali gre za sen¢no ali osvetljeno obmocje.



V vsakem ucnem koraku model izvede naprej
usmerjen prehod ter iz vhodnih podatkov napove sencno
masko, ki jo primerja s ciljno. Napaka se izraCuna z
izgubno funkcijo, na podlagi katere gradienti posodobijo
utezi. Optimizacija je izvedena z algoritmom Adam [16]
z vnaprej doloceno hitrostjo ucenja. Po vsakem prehodu
skozi u¢ni nabor model ocenimo na validacijski mnoZici
z metrikama F1 in razmerjem preseka skozi unijo (angl.
Interesection over Union, IoU). IoU meri prekrivanje
med napovedano in referen¢no binarno masko. Metrika
F1 pa zdruZuje informaciji o natan¢nosti in obcutljivosti,
da omogoca uravnoteZeno oceno modela tudi v primerih
neuravnoteZenih  podatkov. Za preprecevanje
prenaucenosti se uporabi zgodnje ustavljanje, ki prekine
ucenje ob stagnaciji metrik. Kon¢no vrednotenje poteka
na testni mnoZici, lo¢eni od ucenja in validacije. S tem
zagotovimo objektivno oceno sposobnosti modela za
generalizacijo. Hiperparametri, izgube in metrike so
prikazane v naslednjem poglavju.

3 Rezultati

V eksperimentih smo ocenili to¢nost naucenega
napovednega modela v razli¢nih svetlobnih pogojih za
vsako uro v letu. Pri tem smo za vhod uporabili podatke
LiDAR dela mesta Maribor, prostorske velikosti
750 m x 1000 m, pri Cemer smo nastavili Ges = 1 m2.
Eksperimenti so bili izvedeni na sistemu z 13th Gen
Intel Core 19-13900K 24-jedrnim procesorjem, graficno
kartico NVIDIA GeForce RTX 5080, s 16 GB
pomnilnika in 128 GB delovnega pomnilnika.

V tabeli 1 so predstavljeni klju¢ni hiperparametri
ucenja ter Casovna zahtevnost simulacije in ucenja pri
razli¢nih velikostih ploscic, skupaj s povpre¢nim casom
napovedi.

Parameter Vrednost
Povprecno stevilo epoh: 15
Velikost serije (angl. batch size): 32
Hitrost ucenja (angl. learning rate): 1074
Optimizacijski algoritem: Adam
Povprecen ¢as simulacije [ms]: 300
Povprecen Cas napovedi (128 x 128) [ms]: | 238
Povprecen Cas napovedi (256 x 256) [ms]: | 237
Povprecen €as napovedi (512 x 512) [ms]: | 243
Povprecen Cas ucenja (128 x 128) [h]: 5
Povprecen Cas ucenja (256 x 256) [h]: 4
Povprecen ¢as ucenja (512 x 512) [h]: 75

Tabela 1: Uc¢ni parametri in c¢asovna zahtevnost
napovednega modela.

Rezultati to¢nosti modela, pridobljeni z uporabo
metrik IoU in F1, so prikazani v tabeli 2 in prikazujejo
visoko skladnost med napovedanimi in referen¢nimi
sen¢nimi maskami. Za primer velikosti plos¢ic 256 x
256 je na validacijski (IoU: 90,1%, F1: 95,4%) in testni
mnozici (IoU: 90,4%, F1: 95,9%) model dosegel visoke
vrednosti, kar potrjuje njegovo zmoZnost generalizacije.
V tabeli so prav tako prikazani rezultati tocnosti za
ploscice velikosti 128 x 128 in 512 x 512.
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Mnozica: IoU [%]: | F1[%]:
Validacijska (128 x 128): 91,8 95,7
Validacijska (256 x 256): 90,1 95,4
Validacijska (512 x 512): 84,8 91,7
Testna (128 x 128): 92,1 96,2
Testna (256 x 256): 90,4 95,9
Testna (512 x 512): 84,2 92,3
Tabela 2: Primerjava metrik uspesSnosti na vseh

mnoZicah.

Na sliki 2 je na grafu (a) prikazan rezultat metrike
F1 v odvisnosti od Stevila epoh za u¢no in validacijsko
mnozico pri velikosti plos¢ic 256 x 256. F1 hitro naraste
in po peti epohi preseZe rezultat 0.9. Krivulji ostajata ves
Cas blizu, visoka kon¢na vrednost validacijskega F1 (95,4
%) pa nakazuje robustnost modela pri detekciji sen¢nih
obmocij. Na grafu (b) je prikazan potek izgube za u¢no in
validacijsko mnozico za identi¢no velikost. Obe krivulji
se enakomerno zmanjsujeta brez znakov divergence.
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Slika 2: Metrika F1 ter padec izgube skozi epohe pri
velikosti plosCic 256 x 256.

Za namen vizualizacije zmogljivosti modela smo
izbrali reprezentativne Casovne tocCke, ki predstavljajo
pomembne mejnike v Son¢nem ciklu in sicer pomladni
in jesenski ekvinokcij (20. marec in 22. september) ter
poletni in zimski solsticij (21. junij in 21. december).
Vizualna ponazoritev teh ocen je predstavljena na sliki 3.
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Slika 3: Primerjava med dejanskimi in napovedanimi sen¢nimi maskami za Stiri dni v letu ob razli¢nih urah pri

velikosti ploscic 256 x 256.

Ob ekvinokciju je trajanje dneva in noci izenaceno,
Sonce pa se nahaja neposredno nad ekvatorjem. Poletni
solsticij zaznamuje najdalj$i dan v letu, ko Sonce doseZe
najvi§jo toko na nebu. Zimski solsticij pa prinaSa
najnizji polozaj Sonca v letu. Z izbiro teh dni smo
omogocili uravnoteZzeno oceno robustnosti modela v
raznolikih sezonskih pogojih, ki vplivajo na geometrijo
osvetlitve ter hkrati na kompleksnost zaznavanja senc.

Model dosega najvi§jo natancnost v zimskem Casu
ter v jutranjih in popoldanskih urah, ko so sence
izrazitejSe zaradi nizkega poloZaja Sonca. Najboljsi
rezultati so bili doseZeni 21. decembra ob 8. in 16. uri,
kjer je bila skladnost med napovedjo in dejanskimi
podatki skoraj popolna (IoU 98%, F1 99%). Visoko
natan¢nost model ohrani tudi v jesenskem in
spomladanskem ekvinokciju ob 16. uri, z vrednostmi F1
nad 94%. Nasprotno pa model izkazuje slabSo
zmogljivost opoldne, zlasti 22. septembra ob 12. wuri
(IoU 64%, F1 78%) in 21. junija ob 12. uri (IoU 69%,
F1 81%), kar sovpada s krajSimi in manj kontrastnimi
sencami zaradi visokega Soncevega polozaja. Rezultati
kazejo, da ima geometrija osvetlitve klju¢no vlogo pri
natan¢nosti napovedi, saj model dosega najboljSe
rezultate v razmerah, kjer so sence daljSe in izrazitejSe.
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4 Zakljucek

V Clanku smo predstavili pristop za napoved sencnih
obmocij, ki temelji na vhodnih slikah povr§ja in
informacijah o son¢ni legi. Uporabili smo pristop
globokega ucenja arhitekture U-Net, ki smo jo razsirili z
dodatnim slojem za vnos globalnih podatkov o azimutu
in vi$ini sonca. Model smo uc¢ili na podatkovnem naboru
urbanega okolja. Rezultati potrjujejo ucinkovitost
predlaganega modela pri zaznavi sen¢nih obmocij.

Na testnem naboru je model dosegel F1 rezultat
949% in IoU 904 %, s Cimer potrjujemo njegovo
sposobnost prilagajanja modela za dano lokacijo.
Analiza ucnega procesa je potrdila, da model konvergira
stabilno, kar je razvidno iz enakomernega padca funkcije
izgube ter hitrega izboljSanja metrike F1 v zacetnih
epohah. Vizualni rezultati napovedi dodatno kazejo, da
model zanesljivo zaznava vzorce osencenosti v razlicnih
svetlobnih pogojih.

Kljub temu smo v eksperimentih izvedli delitev
podatkov po Casu, ne pa strogo po prostoru, kar pomeni,
da se lahko iste prostorske plos¢ice pojavijo v razlicnih
sklopih ob razli¢nih urah in dnevih. Ta nastavitev
pokaze, da se model dobro posplosi na razlicne



osvetlitvene pogoje za isto lokacijo. Vendar to pomeni
tudi moZnost prostorskega uhajanja informacij (angl.
spatial leakage).

V nadaljnjem delu nalrtujemo razsiritev metode z
vkljucitvijo fizikalno informiranih nevronskih mrez
(angl. physics-informed neural networks).  Metodo
nameravamo dodatno preizkusiti na SirSem naboru
raznovrstnih urbanih obmocij, da bi celoviteje ocenili
njeno robustnost pri generalizaciji na razli¢ne tipologije
urbanega povrsja in svetlobnih pogojev. Poleg tega
bomo rezultate sistematicno primerjali z obstojeco
literaturo na referen¢nih metodah ter validacijo razsirili z
ujemanjem napovedanih senc z ortofoto posnetki, ki
sence Ze vkljuCujejo, kar nam bi omogocilo neposredno
¢asovno usklajeno primerjavo.
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