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Shadow Prediction in Geospatial Data Using
a Deep U-Net Model

The following work presents a deep learning approach
for predicting shadow masks using terrain and position
of the Sun. By employing a U-Net architecture with an
auxiliary branch that encodes solar azimuth and
elevation angles, the model can account for illumination
geometry. The network is trained using a numerically
stable binary cross-entropy loss function, improving
convergence and prediction sharpness. Training is
supported by a dataset comprised of approximately
200,000 terrain patches, derived from digital surface
models (DSMs) and labeled with shadow masks. The
dataset reflecting seasonal and diurnal variations in
urban settings is used to evaluate the proposed method.
Results indicate consistent performance across training
and validation, showcasing strong predictive
capabilities and stable learning dynamics. The model
effectively captures shadow patterns shaped by complex
spatial and lighting conditions.

1 Uvod
Zaznavanje senčenih območij je pomembna naloga na
področju daljinskega zaznavanja, saj sence pogosto
zakrijejo podrobnosti površja. To lahko vpliva na
natančnost algoritmov na področjih, kot so 3D
rekonstrukcije površja [1], prepoznave majhnih
površinskih objektov [2], analize rabe površja [3],
ocenjevanje sončnega obsevanja [4, 5, 6] in termalne
obremenitve [7]. Oblika in razporeditev senc je odvisna
od geometrijskih lastnosti površja in trenutne pozicije
sonca na obzorju (višinski in azimutni kot) [8, 5].
Kompleksnejši relief povzroča bolj raznolike sence,
medtem ko se s premikanjem sonca skozi dan (in letne
čase) spreminja tudi njihova razporeditev na Zemljinem
površju. Kombinacija digitalnega modela površja (angl.
Digital Surface Model, DSM) in informacij o poziciji
Sonca omogoča različnim algoritmom natančno
določanje območij v senci [3].

Pri višjih ločljivostih DSM-ja imajo algoritmi
simuliranja senc na podlagi metanja žarkov visoko
računsko zahtevnost izvajanja, kljub implementacijam
na grafičnih procesnih enotah (angl. Graphics Processing
Units, GPUs) [5]. Rezultat je 2.5 dimenzionalna maska
senčenja za podani DSM. Ena takšnih metod je bila

uporabljena v [6], kjer se je za potrebe pravilne ocenitve
solarnega potenciala moralo upoštevati prisotnost
senčenih območij. Te so prepoznali z uporabo algoritma
za sledenje žarkom (angl. ray-casting). Predlagane so
bile tudi različne metode, ki ne slonijo na uporabi DSM
ali prostorskih informacij Sonca. Metoda, predlagana v
[9], vhodni posnetek površja najprej pretvori iz RGB v
HSV barvni prostor. Sledi izračun razmerja med H in V.
Za tem sledi sprememba intenzitete izračunanih razmerij
s potenčno funkcijo. V zadnjem koraku se s pragovno
funkcijo razloči med senčenimi in nesenčenimi območji.
Avtorji v [10] predlagajo metodo, ki večspektralni
posnetek Zemeljskega površja najprej pretvori v RGB
posnetek. Temu sledi izračun izboljšanega indeksa senc
(angl. Improved Shadow Index, ISI), ki izhaja iz
barvnega prostora YCbCr (pretvorjen iz posnetka RGB)
in dodatnega bližnjega-infrardečega sloja (angl.
Near-Infrared, NIR). Medtem je posnetek RGB
segmentiran z Mean-Shift algoritmom gručenja.
Pridobljena segmentacijska maska je nato uporabljena za
regijsko rekonstrukcijo ISI. Sledi pragovna funkcija, ki
rekonstruiran ISI pretvori v masko senčenih območij.

V zadnjih letih so se predlagale različne metode
prepoznave senčenih območij z uporabo globokega
učenja, ki skušajo biti hitrejše od simulacijskih metod,
hkrati pa doseči visoko natančnost. V [11] so avtorji
predlagali metodo, ki v prvem koraku uporablja gručenje
nad značilkami pikslov. V drugem koraku se uporabi
algoritem za združevanje značilk z upoštevanjem
kontekstnih informacij. Te so namenjene za kasnejšo
boljšo usmeritev modela v prepoznavo senčenih območij
ob uporabi pozornosti znotraj predlagane arhitekture
globoke nevronske mreže. Nenadzorovano ogrodje za
prepoznavo senčenih območij, predlagano v [12],
uporablja modul za generiranje psevdo oznak (angl.
pseudo label generation, IPG) prisotnosti senc, modul za
postopno učenje (angl. curriculum learning, CL) in
modul za samostojno učenje (angl. self-training, ST).
Modula CL in ST sta naučena različnih oblik senc in
skušata izboljšati kakovost generiranih psevdo oznak
modula IPG. Zgolj ta je po končanem učenju uporabljen
za prepoznavo senčenih območij nad novimi podatki.

V članku predlagamo novo metodo za prepoznavo
senčenih območij z uporabo globoke arhitekture U-Net
[13], ki temelji na kombinaciji DSM, izračunanih
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geometrijskih značilnostih površja ter pozicije sonca.
Novost metode je v uporabi trokanalnega vhodnega
tenzorja, kar omogoča bogatejšo reprezentacijo vhodnih
podatkov in natančnejšo prostorsko lokalizacijo senc, saj
model poleg višin uporablja tudi naklon in orientacijo,
zato lažje sklepa o osvetlitvi glede na položaj Sonca in
natančneje napove sence. Razvit model zagotavlja hitro
sklepanje in je tudi hitrejši od klasičnega simulacijskega
pristopa na podlagi metanja žarkov, hkrati pa ohranja
visoko natančnost.

V naslednjem poglavju je predstavljena predlagana
metoda. V tretjem poglavju predstavimo rezultate
eksperimentov in ključne ugotovitve, v četrtem pa
zaključimo članek.

2 Metodologija
Na sliki 1 so prikazani vsi koraki predlaganega
metodološkega poteka, ki zajemajo pripravo vhodnih
podatkov, oblikovanje podatkovne zbirke in pripravo
nalagalnika, implementacijo arhitekture U-Net, učenje
modela ter končno vrednotenje rezultatov.

Preobdelava
podatkov

Podatkovna
zbirka

U-Net
arhitektura Učenje Vrednotenje

Slika 1: Delovni tok modela U-Net za napoved senčenja.

2.1 Predobdelava podatkov
Za učenje modela uporabimo večslojne podatke, ki kot
celota omogočajo napovedovanje senčnih območij na
površju. Osnovni sloj predstavlja DSM, definiran kot G,
ki vsebuje podatke o nadmorski višini. G je predstavljen
kot raster velikosti Gw × Gh (tj. širina in višina)
enakorasteznih celic določene prostorske ločljivosti
Gres (npr. Gres = 1 pri 1 m širine celice). V fazi
predobdelave ustvarimo dodatna sloja naklona β in
orientacije γ površja za vsako celico v G, na podlagi
izračuna gradienta:
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kjer sta x in y prostorski koordinati izbrane celice [4].
Vključeni so tudi podatki o legi Sonca za vsako uro v
letu, podani v obliki sončnih kotov (višina in azimut),
katere vrednosti so izračunane na podlagi algoritma SPA
(angl. Solar Position Algorithm, SPA ) [8]. Ti podatki so
ključni za simulacijo osvetlitve površja v različnih

obdobjih leta. Kot ciljne vrednosti se uporabljajo
binarne maske senčenja, ki so bile pridobljene na
podlagi obstoječega dela avtorjev [5].

V fazi predobdelave so vhodni sloji združeni v
enoten vhodni tenzor oblike [3, GH , GW ], pri čemer
vsak izmed treh kanalov predstavlja en sloj prostorskih
podatkov. Vsi sloji so med seboj usklajeni glede na
prostorsko poravnavo in dimenzije. Celoten vhodni
prostor se nato razdeli na manjše odseke dimenzij 256 ×
256 pikslov. Vsakemu odseku se glede na časovni žig
pripne ustrezna senčna maska, ki prikazuje, kateri deli
površja so v senci glede na trenutni položaj Sonca.
Celoten nabor podatkov je razdeljen na tri podmnožice:
učno, validacijsko in testno, in sicer v razmerju
60:20:20. Med vsako epoho učenja se podatki naključno
premešajo z namenom zmanjšanja tveganja za
prenaučenost.

2.2 Napovedni model globokega učenja U-Net
U-Net predstavlja eno izmed najbolj uveljavljenih
arhitektur na področju semantične segmentacije slik,
zlasti tam, kjer je potrebna visoka prostorska natančnost.
Prvotno je bil zasnovan za segmentacijo biomedicinskih
slik, [13] zaradi učinkovitosti pri sočasnem zajemanju
globalnih vsebinskih vzorcev in lokalnih prostorskih
značilnosti pa se je arhitektura U-Net uveljavila tudi na
področjih, kot so daljinsko zaznavanje, obdelava
satelitskih slik in prostorsko modeliranje v okviru
geografskih informacijskih sistemov [14].

Arhitektura U-Net, uporabljena pri predlagani
metodi, sprejme 3-kanalni vhodni tenzor, kjer vsak kanal
predstavlja sloj prostorskih podatkov površja. Ti skupaj
tvorijo vhodne informacije, na podlagi katerih model
predvidi senčne vzorce. Poleg prostorskih podatkov
arhitektura vključuje tudi pomožni vhod z relativno
sferično pozicijo Sonca. Vrednosti se obdelajo in
vgradijo v globlje sloje mreže, kar omogoča boljšo
prilagoditev napovedi osvetlitvenim pogojem. Mreža
ima simetrično zgradbo s padajočim delom (kodirnik) in
naraščajočim delom (dekodirnik), ki sestavi izhodno
sliko. Končni rezultat je 1-kanalni izhod, ki za vsak
piksel poda verjetnost pripadnosti senci. Za binarno
klasifikacijo vrednosti pragovno razmejimo pri 0,5, pri
čemer vrednost 1 predstavlja osvetljeno, vrednost 0 pa
senčeno območje.

2.3 Postopek učenja in izgubna funkcija
Postopek učenja modela temelji na postopnem
prilagajanju uteži z metodo nadzorovanega učenja, kjer
se model uči napovedovati binarne maske senčenja na
podlagi znanih vhodno-izhodnih parov. V fazi učenja
poseben poudarek namenjamo izbiri in uporabi ustrezne
izgubne funkcije. Uporabili smo binarno
navzkrižno-entropijsko izgubno funkcijo (angl. binary
cross-entropy) [15]. Izguba se izračuna kot:

L(s, t) = log
(
1 + e−|s|

)
+max(0, s)− s · t, (5)

kjer s predstavlja napoved modela, t ∈ {0, 1} pa ciljno
vrednost, ali gre za senčno ali osvetljeno območje.
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V vsakem učnem koraku model izvede naprej
usmerjen prehod ter iz vhodnih podatkov napove senčno
masko, ki jo primerja s ciljno. Napaka se izračuna z
izgubno funkcijo, na podlagi katere gradienti posodobijo
uteži. Optimizacija je izvedena z algoritmom Adam [16]
z vnaprej določeno hitrostjo učenja. Po vsakem prehodu
skozi učni nabor model ocenimo na validacijski množici
z metrikama F1 in razmerjem preseka skozi unijo (angl.
Interesection over Union, IoU). IoU meri prekrivanje
med napovedano in referenčno binarno masko. Metrika
F1 pa združuje informaciji o natančnosti in občutljivosti,
da omogoča uravnoteženo oceno modela tudi v primerih
neuravnoteženih podatkov. Za preprečevanje
prenaučenosti se uporabi zgodnje ustavljanje, ki prekine
učenje ob stagnaciji metrik. Končno vrednotenje poteka
na testni množici, ločeni od učenja in validacije. S tem
zagotovimo objektivno oceno sposobnosti modela za
generalizacijo. Hiperparametri, izgube in metrike so
prikazane v naslednjem poglavju.

3 Rezultati
V eksperimentih smo ocenili točnost naučenega
napovednega modela v različnih svetlobnih pogojih za
vsako uro v letu. Pri tem smo za vhod uporabili podatke
LiDAR dela mesta Maribor, prostorske velikosti
750m × 1000m, pri čemer smo nastavili Gres = 1 m2.
Eksperimenti so bili izvedeni na sistemu z 13th Gen
Intel Core i9-13900K 24-jedrnim procesorjem, grafično
kartico NVIDIA GeForce RTX 5080, s 16 GB
pomnilnika in 128 GB delovnega pomnilnika.

V tabeli 1 so predstavljeni ključni hiperparametri
učenja ter časovna zahtevnost simulacije in učenja pri
različnih velikostih ploščic, skupaj s povprečnim časom
napovedi.

Parameter Vrednost
Povprečno število epoh: 15
Velikost serije (angl. batch size): 32
Hitrost učenja (angl. learning rate): 10−4

Optimizacijski algoritem: Adam
Povprečen čas simulacije [ms]: 300
Povprečen čas napovedi (128 x 128) [ms]: 238
Povprečen čas napovedi (256 x 256) [ms]: 237
Povprečen čas napovedi (512 x 512) [ms]: 243
Povprečen čas učenja (128 x 128) [h]: 5
Povprečen čas učenja (256 x 256) [h]: 4
Povprečen čas učenja (512 x 512) [h]: 75

Tabela 1: Učni parametri in časovna zahtevnost
napovednega modela.

Rezultati točnosti modela, pridobljeni z uporabo
metrik IoU in F1, so prikazani v tabeli 2 in prikazujejo
visoko skladnost med napovedanimi in referenčnimi
senčnimi maskami. Za primer velikosti ploščic 256 x
256 je na validacijski (IoU: 90,1%, F1: 95,4%) in testni
množici (IoU: 90,4%, F1: 95,9%) model dosegel visoke
vrednosti, kar potrjuje njegovo zmožnost generalizacije.
V tabeli so prav tako prikazani rezultati točnosti za
ploščice velikosti 128 × 128 in 512 × 512.

Množica: IoU [%]: F1 [%]:
Validacijska (128 x 128): 91,8 95,7
Validacijska (256 x 256): 90,1 95,4
Validacijska (512 x 512): 84,8 91,7
Testna (128 x 128): 92,1 96,2
Testna (256 x 256): 90,4 95,9
Testna (512 x 512): 84,2 92,3

Tabela 2: Primerjava metrik uspešnosti na vseh
množicah.

Na sliki 2 je na grafu (a) prikazan rezultat metrike
F1 v odvisnosti od števila epoh za učno in validacijsko
množico pri velikosti ploščic 256 x 256. F1 hitro naraste
in po peti epohi preseže rezultat 0.9. Krivulji ostajata ves
čas blizu, visoka končna vrednost validacijskega F1 (95,4
%) pa nakazuje robustnost modela pri detekciji senčnih
območij. Na grafu (b) je prikazan potek izgube za učno in
validacijsko množico za identično velikost. Obe krivulji
se enakomerno zmanjšujeta brez znakov divergence.
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Slika 2: Metrika F1 ter padec izgube skozi epohe pri
velikosti ploščic 256 × 256.

Za namen vizualizacije zmogljivosti modela smo
izbrali reprezentativne časovne točke, ki predstavljajo
pomembne mejnike v Sončnem ciklu in sicer pomladni
in jesenski ekvinokcij (20. marec in 22. september) ter
poletni in zimski solsticij (21. junij in 21. december).
Vizualna ponazoritev teh ocen je predstavljena na sliki 3.
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Slika 3: Primerjava med dejanskimi in napovedanimi senčnimi maskami za štiri dni v letu ob različnih urah pri
velikosti ploščic 256 x 256.

Ob ekvinokciju je trajanje dneva in noči izenačeno,
Sonce pa se nahaja neposredno nad ekvatorjem. Poletni
solsticij zaznamuje najdaljši dan v letu, ko Sonce doseže
najvišjo točko na nebu. Zimski solsticij pa prinaša
najnižji položaj Sonca v letu. Z izbiro teh dni smo
omogočili uravnoteženo oceno robustnosti modela v
raznolikih sezonskih pogojih, ki vplivajo na geometrijo
osvetlitve ter hkrati na kompleksnost zaznavanja senc.

Model dosega najvišjo natančnost v zimskem času
ter v jutranjih in popoldanskih urah, ko so sence
izrazitejše zaradi nizkega položaja Sonca. Najboljši
rezultati so bili doseženi 21. decembra ob 8. in 16. uri,
kjer je bila skladnost med napovedjo in dejanskimi
podatki skoraj popolna (IoU 98%, F1 99%). Visoko
natančnost model ohrani tudi v jesenskem in
spomladanskem ekvinokciju ob 16. uri, z vrednostmi F1
nad 94%. Nasprotno pa model izkazuje slabšo
zmogljivost opoldne, zlasti 22. septembra ob 12. uri
(IoU 64%, F1 78%) in 21. junija ob 12. uri (IoU 69%,
F1 81%), kar sovpada s krajšimi in manj kontrastnimi
sencami zaradi visokega Sončevega položaja. Rezultati
kažejo, da ima geometrija osvetlitve ključno vlogo pri
natančnosti napovedi, saj model dosega najboljše
rezultate v razmerah, kjer so sence daljše in izrazitejše.

4 Zaključek
V članku smo predstavili pristop za napoved senčnih
območij, ki temelji na vhodnih slikah površja in
informacijah o sončni legi. Uporabili smo pristop
globokega učenja arhitekture U-Net, ki smo jo razširili z
dodatnim slojem za vnos globalnih podatkov o azimutu
in višini sonca. Model smo učili na podatkovnem naboru
urbanega okolja. Rezultati potrjujejo učinkovitost
predlaganega modela pri zaznavi senčnih območij.

Na testnem naboru je model dosegel F1 rezultat
94,9% in IoU 90,4 %, s čimer potrjujemo njegovo
sposobnost prilagajanja modela za dano lokacijo.
Analiza učnega procesa je potrdila, da model konvergira
stabilno, kar je razvidno iz enakomernega padca funkcije
izgube ter hitrega izboljšanja metrike F1 v začetnih
epohah. Vizualni rezultati napovedi dodatno kažejo, da
model zanesljivo zaznava vzorce osenčenosti v različnih
svetlobnih pogojih.

Kljub temu smo v eksperimentih izvedli delitev
podatkov po času, ne pa strogo po prostoru, kar pomeni,
da se lahko iste prostorske ploščice pojavijo v različnih
sklopih ob različnih urah in dnevih. Ta nastavitev
pokaže, da se model dobro posploši na različne
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osvetlitvene pogoje za isto lokacijo. Vendar to pomeni
tudi možnost prostorskega uhajanja informacij (angl.
spatial leakage).

V nadaljnjem delu načrtujemo razširitev metode z
vključitvijo fizikalno informiranih nevronskih mrež
(angl. physics-informed neural networks). Metodo
nameravamo dodatno preizkusiti na širšem naboru
raznovrstnih urbanih območij, da bi celoviteje ocenili
njeno robustnost pri generalizaciji na različne tipologije
urbanega površja in svetlobnih pogojev. Poleg tega
bomo rezultate sistematično primerjali z obstoječo
literaturo na referenčnih metodah ter validacijo razširili z
ujemanjem napovedanih senc z ortofoto posnetki, ki
sence že vključujejo, kar nam bi omogočilo neposredno
časovno usklajeno primerjavo.

Zahvala
Raziskovalno delo je bilo sofinancirano s strani Javne
agencije za znanstvenoraziskovalno in inovacijsko
dejavnost Republike Slovenije, v okviru temeljnega
projekta št. J7-50095 in raziskovalnega programa št.
P2-0041. Za podatke LiDAR se zahvaljujemo Agenciji
Republike Slovenije za okolje.
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