
ERK'2025, Portorož, 329-332 329

MSP and NCFP: Novel bloat control methods
for Genetic Programming

Marko Šmid, Matej Moravec, Miha Ravber
University of Maribor, Faculty of Electrical Engineering and Computer Science,

Koroška cesta 46, 2000 Maribor, Slovenia
E-mails: {marko.smid2, matej.moravec, miha.ravber}@um.si

Abstract. Bloat in Genetic Programming refers to the
phenomenon where evolved solutions become excessively
large without corresponding improvements in fitness, re-
sulting in diminished solution quality and reduced read-
ability. In this study, we propose two novel bloat con-
trol methods, called Minimal Subtree Pruning and Node
Count Frequency Pruning. The first method constrains
the solution size by pruning subtrees such that the result-
ing number of nodes is as close as possible to a prede-
fined maximum. The second method, designed specifi-
cally for solutions encoded as Behavior Trees, reduces
the bloat by removing nodes with count frequencies below
a predefined threshold. Genetic programming algorithms
utilizing these methods are evaluated against a standard
genetic programming algorithm with a commonly used
depth-limiting bloat control method. The Collector prob-
lem domain is utilized as a benchmark. The experimen-
tal results indicate that both proposed methods improve
the overall performance of the genetic programming al-
gorithm, producing better and more compact solutions
compared to the baseline algorithm.

1 Introduction
Genetic Programming (GP) is a branch of evolutionary
algorithms in which solutions are represented as com-
puter programs. Unlike fixed-length representations com-
mon in other evolutionary techniques, GP solutions can
assume arbitrary structural forms. In standard GP, solu-
tions are typically encoded as tree structures composed
of functions and terminals [1].
GP employs a genetic algorithm that simulates the pro-
cess of natural evolution, where a population of candidate
solutions is refined iteratively over a predefined number
of generations. During each generation, genetic opera-
tors are applied, such as selection, crossover, recombi-
nation, and mutation. The selection process identifies
high-performing solutions as candidates for the next gen-
eration. The selected solutions may undergo modifica-
tions through crossover, which combines parts of two so-
lutions, or mutation, which introduces random changes
to nodes or subtrees. Other solutions are retained un-
changed through reproduction. Each solution is then eval-
uated, to assess its performance on a given benchmark.
This evolutionary process continues until a specified stop-
ping criterion is met.

The variation operators in GP often modify solutions by
exchanging or inserting structural components within pro-
grams. Due to the nature of these modifications, the evo-
lutionary dynamics tend to favor the accumulation of ad-
ditional code rather than its removal. This is because the
introduction of new material is more likely to maintain or
improve fitness slightly than the elimination of existing
components, which may risk degrading performance. As
a result, solutions often grow in size and depth progres-
sively over future generations, even when this growth no
longer yields meaningful improvements in fitness. This
tendency for solution structures to increase in complexity
without corresponding gains in performance is known as
code bloat [2].
Bloat is a well-known problem, yet no consensus exists
on why it occurs. Nevertheless, several theories have
been proposed to explain its emergence. Early theories
focused on the role of introns. An intron is a part of
the solution that does not affect its performance. One of
the earliest explanations, known as the hitchhiking the-
ory, suggests that introns are preserved because they are
linked to essential building blocks of the solution, and
since they do not impact fitness negatively, there is no
evolutionary pressure to remove them [3]. This idea led
to a broader theory, called the defense against crossover
theory, which presumes that introns serve as a protec-
tive buffer, shielding the functional code from the poten-
tially disruptive effects of variation operators once a high-
performing solution is discovered [4]. The removal bias
theory highlights an asymmetry in how genetic opera-
tions affect code regions. Specifically, to exploit crossover
within non-functional (intron) code regions without de-
grading fitness, the size of the removed subtree must be
constrained to the intron region [4]. In contrast, the fitness
causes bloat theory takes a non-intron-based perspective,
arguing that larger solutions are statistically more likely
to exhibit higher fitness [2].
Although no formal method for bloat control exists, a
wide range of techniques have been proposed to mitigate
its effects in GP [5]. These approaches can be catego-
rized broadly into three main groups. The first group
includes size and depth limiting techniques, which im-
pose explicit constraints on the maximum size or depth
of solutions to prevent the evolution of excessively large
solutions [1]. The second group encompasses penaliza-



330

tion methods, where overly large solutions are assigned
reduced fitness scores, thereby discouraging their selec-
tion during evolution [6, 7]. The third group involves the
use of modified genetic operators that are designed ex-
plicitly to reduce or manage growth during the variation
process [8, 9]. In addition to these techniques, various
alternative methods have been proposed to control bloat.
These include The waiting room [10], Death by size [10],
Prune and Plant [11], and Pareto-based Multi-objective
Parsimony Pressure [12].
There are several reasons for employing bloat control
methods in GP. First, controlling bloat can lead to more
compact and interpretable final solutions without com-
promising and potentially even improving performance.
Second, by limiting the size of solutions, the effective
search space may be reduced, enabling the algorithm to
discover high-quality solutions with smaller representa-
tions. Third, smaller solutions typically require fewer
computational resources, which can result in faster exe-
cution and reduced processing time during evolution [13].
This study proposes two novel bloat control methods call-
ed Minimal Subtree Pruning (MSP) and Node Count Fre-
quency Pruning (NCFP). MSP constrains solution size by
pruning subtrees such that the resulting number of nodes
is as close as possible to a predefined maximum. NCFP
reduces bloat by removing nodes with count frequencies
below a predefined threshold. We evaluated the proposed
methods against a commonly used depth-limiting method
[1], which served as a baseline. Throughout the paper,
this method is referred to as Tree Depth Pruning (TDP).
TDP prunes solutions that exceed the maximum depth af-
ter crossover and mutation.
The remainder of this paper is structured as follows. The
following section provides a detailed description of the
proposed methods. Section 3 outlines the experimental
setup employed. Section 4 presents and discusses the
experimental results. Finally, Section 5 summarizes the
conclusions and identifies directions for future work.

2 Bloat control methods
This section describes our proposed methods, MSP and
NCFP. The main idea of the MSP is to prune the solu-
tion by removing a subtree, where the size of the solution
after the subtree is removed is closest to the maximum de-
fined tree size, determined by the number of nodes. This
method follows the rule that removing the fewest nodes
possible will result in the least performance changes. The
maximum number of nodes that a solution can have is de-
fined by the TreeSize parameter. If a solution exceeds the
TreeSize, a suitable subtree must be removed. For each
possible subtree, the difference is calculated between the
modified solution size and the maximum tree size. In
the next step, a subtree with the smallest difference is
removed, where the number of nodes is below or equal
to the maximum number of nodes. When two or more
candidate subtrees have an identical number of nodes,
the first subtree encountered is selected in a left-to-right
traversal. If the root of the subtree was the only child of
a function node, then this node is replaced by a random

terminal. This method is applied before the evaluation
process. One drawback of this method is that no informa-
tion about the removed subtree is known, and its impact
on the overall performance of the solution.
The NCFP method is tailored specifically for Behavior
Trees (BTs) [14], and operates on the premise that nodes
with low execution frequencies contribute minimally to
the overall performance of a solution and can thus be re-
moved with greater confidence. This method is applied
post-evaluation. The frequency of each node’s execu-
tion (termed node count frequency) is recorded during the
evaluation phase. Nodes with count frequencies below a
specified threshold, defined by the parameter
pruneThreshold, are identified as candidates for removal.
For each candidate node, a random number is sampled
uniformly from the interval [0, 1). The node is removed
if the random number is less than the pruneProbability.
These two parameters, pruneThreshold and pruneProb-
ability, allow a high degree of flexibility and control of
the pruning process. A notable drawback of NCFP is the
requirement for reevaluation of solutions when nodes are
removed with non-zero count frequencies.

3 Experiment design
To evaluate the performance of the proposed MSP and
NCFP methods, we conducted experiments within the Col-
lector problem domain. The Collector game requires an
agent to navigate a dynamic terrain and collect as many
targets as possible within a specified time limit. The time
limit was set to 60 seconds, and the best fitness that an
agent can achieve is -550. The experiments were con-
ducted using the General Intelligent AgeNt Trainer (GI-
ANT) platform [15]. GIANT’s modular design allowed
for seamless integration of our custom bloat control meth-
ods. The platform’s support for parallel processing and
highly configurable parameters facilitates large-scale ex-
perimentation, reducing computational time substantially
while maintaining reproducible results.
A standard GP algorithm was employed, augmented with
an elitism mechanism. Elitism guarantees that the best
solutions are retained in the population, thereby main-
taining solution quality throughout the evolutionary pro-
cess [16]. BTs were used as a solution representation
structure. The specific GP parameters utilized, includ-
ing population size, crossover and mutation probability,
and other relevant settings, are summarized in Table 1.
For each bloat control method, we tested several config-
urations, each described in Table 2.

4 Results and discussion
In the experiments, we compared the performance of the
GP algorithm utilizing MSP and NCFP methods against
a GP algorithm with a TDP bloat control method. Four
different matrices were analyzed when comparing these
methods, namely, mean best fitness, mean population fit-
ness, mean population tree depth, and mean population
tree size. Mean population fitness was used to assess the
stability and generalizability of GP algorithms with bloat
control methods. Unlike mean best fitness, which reflects



331

Table 1: GP algorithm parameter values.

Parameter Value
Population size 100
Generations 20
Selection tournament (size = 2)
Crossover prob. 0.75
Mutation prob. 0.25
Elitism prob. 0.05
Functions Sequencer, Selector, Inverter
Terminals RayHitObject, MoveForward, Rotate
Runs 30
Init. pop. gen. random

Table 2: Parameters of the bloat control methods.
Method Parameter values
TDP 25 max tree depth: 25
TDP 10 max tree depth: 10
TDP 6 max tree depth: 6
MSP 100 max tree depth: 25, max tree size: 100
MSP 50 max tree depth: 25, max tree size: 50
NCFP 20 max tree depth: 25, prune threshold: 20%

prune probability: 0.2
NCFP 10 max tree depth: 25, prune threshold: 10%,

prune probability: 0.2
NCFP 5 max tree depth: 25, prune threshold: 5%,

prune probability: 0.4

only the top individual, it may reveal issues like stagna-
tion or overfitting. All the values were averaged over 30
independent runs.
Figure 1 presents the results for the mean best fitness.
The results show that the methods can be divided into
three groups based on their final mean best fitness. The
first group, achieving the best performance, consisted of
NCFP 20, NCFP 5, and NCFP 10. The second group,
demonstrating intermediate performance, included TDP 6
and MSP 50. The third group, exhibiting the lowest per-
formance, comprised the TDP 25, TDP 10, and MSP 100.
Among all algorithms evaluated, NCFP 10 yielded the
best solutions consistently throughout most of the op-
timization process. However, in the final four genera-
tions, NCFP 5 surpassed NCFP 10, achieving better fit-
ness. Notably, all the MSP and NCFP methods, except
for MSP 100, outperformed the baseline method, under-
scoring their performance in controlling bloat while main-
taining or improving solution quality.
The mean population fitness is represented in Figure 2.
The results revealed a distinct partitioning of the evalu-
ated methods into two groups based on the mean pop-
ulation fitness, contrasting with the trends observed in
mean best fitness. The first group, demonstrating bet-
ter mean population fitness, was comprised of TDP 10,
TDP 6, MSP 100, MSP 50, and TDP 25. The second
group, exhibiting lower mean population fitness, included
NCFP 20, NCFP 5, and NCFP 10. Notably, the base-
line TDP 25 outperformed all the other methods in this
metric, highlighting its effectiveness in maintaining pop-
ulation-wide fitness despite the absence of bloat control

Figure 1: Mean best fitness per generation, averaged over 30
independent runs.

mechanisms.

Figure 2: Mean population fitness per generation, averaged over
30 independent runs.

The third metric evaluated in this study was the mean
population tree depth, with the results presented in Fig-
ure 3. As anticipated, TDP 6 generated solutions with
the smallest tree depths consistently among the evalu-
ated algorithms, consistent with its stricter depth con-
straints. Conversely, TDP 25 produced solutions with the
largest tree depths, reflecting its more permissive depth
limitations. The remaining algorithms, TDP 10, MSP,
and NCFP variants, generated solutions with intermedi-
ate tree depths, ranging from 8 to 11, indicating a bal-
anced approach to bloat control.

Figure 3: Mean population tree depth per generation, averaged
over 30 independent runs.

The fourth and final metric assessed was the mean pop-



332

ulation tree size, with the results presented in Figure 4.
In alignment with the mean population tree depth results,
the TDP 25 generated solutions with the largest tree sizes.
The remaining algorithms can be classified into three dis-
tinct groups based on tree size. The first group, exhibiting
the smallest solution sizes, comprised MSP 50, NCFP 10,
NCFP 20, and NCFP 5. The second group, with larger
solution sizes, included TDP 6 and MSP 100. The third
group, characterized by the second-largest solution size,
consisted solely of TDP 10. A notable observation is
that, although NCFP 5 generated solutions with tree depths
exceeding those of most algorithms (except TDP 25), it
yielded the smallest tree sizes consistently among all eval-
uated algorithms. This suggests that NCFP 5 balances
depth and size effectively, achieving compact solutions
without compromising structural complexity.

Figure 4: Mean population tree size per generation, averaged
over 30 independent runs.

5 Conclusion
This study introduced two novel bloat control methods
for GP: MSP and NCFP. These methods were designed
to mitigate the excessive growth of solutions, enhanc-
ing both their performance and readability. Evaluated
within the Collector problem domain using the GIANT
platform, GP algorithms utilizing MSP and NCFP meth-
ods were compared against a GP algorithm with a depth-
limiting bloat control method. The experimental results
demonstrated that GP algorithms using the proposed meth-
ods, particularly the one with the NCFP method, outper-
formed the GP with the baseline method in terms of mean
best fitness while producing more compact solutions, as
evidenced by the reduced tree sizes and balanced tree
depths. However, the baseline method excelled in mean
population fitness, highlighting trade-offs in population-
wide performance.
While MSP and NCFP showed strong performance, fur-
ther comparison against other bloat control methods across
diverse problem domains is required. In addition, system-
atic experiments under varying GP algorithm configura-
tions (e.g., population sizes and time budgets) are neces-
sary to evaluate their robustness and adaptability.

Acknowledgments
The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No.
P2-0114).

References
[1] J. R. Koza, Genetic Programming: On the Programming

of Computers by Means of Natural Selection. Cambridge,
MA, USA: MIT Press, 1992.

[2] W. B. Langdon and R. Poli, “Fitness causes bloat,” in Soft
Computing in Engineering Design and Manufacturing, P.
K. Chawdhry, R. Roy, and R. K. Pant, Eds. London, UK:
Springer-Verlag, 1997, pp. 13–22.

[3] W. A. Tackett, “Recombination, selection, and the genetic
construction of computer programs,” Ph.D. dissertation,
Univ. Southern California, Los Angeles, CA, USA, 1994.

[4] T. Soule and J. A. Foster, ”Removal bias: a new cause
of code growth in tree based evolutionary programming,”
1998 IEEE International Conference on Evolutionary Com-
putation Proceedings. IEEE World Congress on Computa-
tional Intelligence (Cat. No.98TH8360), Anchorage, AK,
USA, 1998, pp. 781-786, doi: 10.1109/ICEC.1998.700151.

[5] N. Javed, F. Gobet, and P. Lane, ‘Simplification of genetic
programs: a literature survey’, Data Min Knowl Disc, vol.
36, no. 4, pp. 1279–1300, Jul. 2022, doi: 10.1007/s10618-
022-00830-7.

[6] T. Soule and J. A. Foster, ”Effects of code growth and par-
simony pressure on populations in genetic programming,”
Evol. Comput., vol. 6, no. 4, pp. 293–309, 1998, doi:
10.1162/evco.1998.6.4.293.

[7] S. Luke and L. Panait, ”Lexicographic parsimony pres-
sure,” in Proc. 4th Annu. Conf. Genet. Evol. Comput.,
2002, pp. 829–836.

[8] W. B. Langdon et al., ”Size fair and homologous tree ge-
netic programming crossovers,” Genetic Programming and
Evolvable Machines, vol. 1, no. 1/2, pp. 95–119, 2000.

[9] H. Bhardwaj and P. Dashore, ‘A novel genetic program-
ming approach to control bloat using crossover and mu-
tation with intelligence technique’, in 2015 International
Conference on Computer, Communication and Control
(IC4), Sep. 2015, pp. 1–6. doi: 10.1109/IC4.2015.7375619.

[10] L. Panait and S. Luke, ”Alternative bloat control meth-
ods,” in Proc. Genetic Evol. Comput. Conf., Berlin, Hei-
delberg, 2004, pp. 630–641.

[11] E. Alfaro-Cid, A. Esparcia-Alcázar, K. Sharman, and F. F.
de Vega, ‘Prune and Plant: A New Bloat Control Method
for Genetic Programming’, in 2008 Eighth International
Conference on Hybrid Intelligent Systems, Sep. 2008, pp.
31–35. doi: 10.1109/HIS.2008.127.

[12] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, ‘Mul-
tiobjective genetic programming: reducing bloat using
SPEA2’, in Proceedings of the 2001 Congress on Evo-
lutionary Computation (IEEE Cat. No.01TH8546), May
2001, pp. 536–543 vol. 1. doi: 10.1109/CEC.2001.934438.

[13] S. Luke and L. Panait, ”A Comparison of Bloat Con-
trol Methods for Genetic Programming,” in Evolutionary
Computation, vol. 14, no. 3, pp. 309-344, Sept. 2006, doi:
10.1162/evco.2006.14.3.309.

[14] M. Mateas and A. Stern, ”A behavior language for
story-based believable agents,” in IEEE Intelligent Sys-
tems, vol. 17, no. 4, pp. 39-47, July-Aug. 2002, doi:
10.1109/MIS.2002.1024751.

[15] GIANT, https://github.com/UM-LPM/GIANT

[16] D. Dumitrescu et al., Evolutionary Computation. Boca
Raton, FL, USA: CRC Press, 2000.


